Subscribe to RSS

DOI: 10.4103/ijmbs.ijmbs_6_20
Nicotinamide adenine dinucleotide, the sirtuins, and the secret of a long health span

The sirtuins constitute a family of proteins with broad enzymatic activities that have an absolute requirement for nicotinamide adenine dinucleotide (NAD+) as a cosubstrate. Evidence has been mounting over the past 15 years or so that implicates the sirtuins in a vast array of critical cellular functions. In addition to transcription silencing and DNA repair, these functions include the regulation of ion channels, neuronal functions, cell growth, circadian rhythm, inflammatory response, mitochondrial biogenesis, insulin secretion, fat oxidation, and glucose metabolism. The sirtuins are critical for maintaining mitochondrial health, energy homeostasis, and redox balance. The sirtuins are widely believed to be behind the extension of lifespan brought about by calorie restriction and fasting. Changes in sirtuins activities have been linked to most age-related pathologies including cardiovascular disease, cancer, and Alzheimer's disease (AD). NAD+ is familiar to students of biological chemistry as an enzyme cofactor whose presence is essential for the progress of hundreds of vital biochemical reactions. This compound is present in virtually all living organisms. Simply put, without NAD+, life as we know it would not exist. The progress of these reactions requires the cleavage of NAD+, whose intracellular levels are known to decline steadily with age. This decline and its negative impact on the activities of these enzymes and on metabolism in general are implicated in the development of metabolic and age-linked diseases. Therefore, maintaining high intracellular NAD+ levels throughout life may not only extend the lifespan but is likely to extend the health span as well. In this paper I review how the intracellular pool of NAD+ is maintained and summarize the functions and regulation of sirtuins activities.
Financial support and sponsorship
Nil.
Publication History
Received: 17 January 2020
Accepted: 27 January 2020
Article published online:
07 July 2022
© 2020. The Libyan Authority of Scientific Research and Technologyand the Libyan Biotechnology Research Center. All rights reserved. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License,permitting copying and reproductionso long as the original work is given appropriate credit. Contents may not be used for commercial purposes, oradapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 Houtkooper RH, Cantó C, Wanders RJ, Auwerx J. The secret life of NAD+: An old metabolite controlling new metabolic signaling pathways. Endocr Rev 2010;31:194-223.
- 2 Chini CC, Tarragó MG, Chini EN. NAD and the aging process: Role in life, death and everything in between. Mol Cell Endocrinol 2017;455:62-74.
- 3 Lautrup S, Sinclair DA, Mattson MP, Fang EF. NAD+in Brain Aging and Neurodegenerative Disorders. Cell Metab 2019;30:630-55.
- 4 Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: Regulation and biological consequences. Antioxid Redox Signal 2008;10:179-206.
- 5 Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev 2008;88:841-86.
- 6 Murata MM, Kong X, Moncada E, Chen Y, Imamura H, Wang P, et al. NAD+consumption by PARP1 in response to DNA damage triggers metabolic shift critical for damaged cell survival. Mol Biol Cell 2019;30:2584-97.
- 7 Dantzer F, Amé JC, Schreiber V, Nakamura J, Ménissier-de Murcia J, de Murcia G. Poly (ADP-ribose) polymerase-1 activation during DNA damage and repair. Methods Enzymol 2006;409:493-510.
- 8 Cantó C, Menzies KJ, Auwerx J. NAD(+) metabolism and the control of energy homeostasis: A balancing act between mitochondria and the nucleus. Cell Metab 2015;22:31-53.
- 9 Fujita Y, Yamashita T. Sirtuins in neuroendocrine regulation and neurological diseases. Front Neurosci 2018;12:778.
- 10 Bender DA. Biochemistry of tryptophan in health and disease. Mol Aspects Med 1983;6:101-97.
- 11 Schwarcz R, Stone TW. The kynurenine pathway and the brain: Challenges, controversies and promises. Neuropharmacology 2017;112:237-47.
- 12 Badawy AA. Kynurenine pathway and human systems. Exp Gerontol 2020;129:110770.
- 13 Lugo-Huitrón R, Ugalde Muñiz P, Pineda B, Pedraza-Chaverrí J, Ríos C, Pérez-de la Cruz V. Quinolinic acid: An endogenous neurotoxin with multiple targets. Oxid Med Cell Longev 2013;2013:104024.
- 14 Stone TW, Darlington LG. Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov 2002;1:609-20.
- 15 Guillemin GJ. Quinolinic acid, the inescapable neurotoxin. FEBS J 2012;279:1356-65.
- 16 Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona JJ, et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 2007;130:1095-107.
- 17 Wojcik M, Seidle HF, Bieganowski P, Brenner C. Glutamine-dependent NAD+synthetase. How a two-domain, three-substrate enzyme avoids waste. J Biol Chem 2006;281:33395-402.
- 18 Sydenstricker VP. The history of pellagra, its recognition as a disorder of nutrition and its conquest. Am J Clin Nutr 1958;6:409-14.
- 19 Jacobson MK, Jacobson EL. Vitamin B3 in health and disease: Toward the second century of discovery. Methods Mol Biol 2018;1813:3-8.
- 20 Hegyi J, Schwartz RA, Hegyi V. Pellagra: Dermatitis, dementia, and diarrhea. Int J Dermatol 2004;43:1-5.
- 21 Gerdts J, Brace EJ, Sasaki Y, DiAntonio A, Milbrandt J. SARM1 activation triggers axon degeneration locally via NAD+ destruction. Science 2015;348:453-7.
- 22 Zhang N, Sauve AA. Regulatory Effects of NAD+ Metabolic Pathways on Sirtuin Activity. Prog Mol Biol Transl Sci 2018;154:71-104.
- 23 Haigis MC, Sinclair DA. Mammalian sirtuins: Biological insights and disease relevance. Annu Rev Pathol 2010;5:253-95.
- 24 Sauve AA, Wolberger C, Schramm VL, Boeke JD. The biochemistry of sirtuins. Annu Rev Biochem 2006;75:435-65.
- 25 Hall JA, Dominy JE, Lee Y, Puigserver P. The sirtuin family's role in aging and age-associated pathologies. J Clin Invest 2013;123:973-9.
- 26 Guarente L. Diverse and dynamic functions of the Sir silencing complex. Nat Genet 1999;23:281-5.
- 27 Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000;403:795-800.
- 28 Denu JM. The Sir 2 family of protein deacetylases. Curr Opin Chem Biol 2005;9:431-40.
- 29 Seto E, Yoshida M. Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb Perspect Biol 2014;6:a018713.
- 30 Ong ALC, Ramasamy TS. Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. Ageing Res Rev 2018;43:64-80.
- 31 Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell 2010;38:864-78.
- 32 Dioum EM, Chen R, Alexander MS, Zhang Q, Hogg RT, Gerard RD, et al. Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1. Science 2009;324:1289-93.
- 33 Maxwell MM, Tomkinson EM, Nobles J, Wizeman JW, Amore AM, Quinti L, et al. The Sirtuin 2 microtubule deacetylase is an abundant neuronal protein that accumulates in the aging CNS. Hum Mol Genet 2011;20:3986-96.
- 34 Donmez G, Outeiro TF. SIRT1 and SIRT2: Emerging targets in neurodegeneration. EMBO Mol Med 2013;5:344-52.
- 35 Toshihiro M. Polarization and myelination in myelinating glia. ISRN Neurol 2012;2012:769412.
- 36 Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 2012;13:225-38.
- 37 Yang X, Park SH, Chang HC, Shapiro JS, Vassilopoulos A, Sawicki KT, et al. Sirtuin 2 regulates cellular iron homeostasis via deacetylation of transcription factor NRF2. J Clin Invest 2017;127:1505-16.
- 38 Kerins MJ, Ooi A. The roles of NRF2 in modulating cellular Iron homeostasis. Antioxid Redox Signal 2018;29:1756-73.
- 39 Buechler N, Wang X, Yoza BK, McCall CE, Vachharajani V. Sirtuin 2 regulates microvascular inflammation during sepsis. J Immunol Res 2017;2017:2648946.
- 40 Bell EL, Guarente L. The SirT3 divining rod points to oxidative stress. Mol Cell 2011;42:561-8.
- 41 Shimazu T, Hirschey MD, Hua L, Dittenhafer-Reed KE, Schwer B, Lombard DB, et al. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab 2010;12:654-61.
- 42 Signes A, Fernandez-Vizarra E. Assembly of mammalian oxidative phosphorylation complexes I-V and supercomplexes. Essays Biochem 2018;62:255-70.
- 43 Han C, Someya S. Maintaining good hearing: Calorie restriction, Sirt3, and glutathione. Exp Gerontol 2013;48:1091-5.
- 44 Kida Y, Goligorsky MS. Sirtuins, Cell Senescence, and Vascular Aging. Can J Cardiol 2016;32:634-41.
- 45 Mathias RA, Greco TM, Oberstein A, Budayeva HG, Chakrabarti R, Rowland EA, et al. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell 2014;159:1615-25.
- 46 Srivastava S, Haigis MC. Role of sirtuins and calorie restriction in neuroprotection: Implications in Alzheimer's and Parkinson's diseases. Curr Pharm Des 2011;17:3418-33.
- 47 Kumar S, Lombard DB. Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology. Crit Rev Biochem Mol Biol 2018;53:311-34.
- 48 Tennen RI, Chua KF. Chromatin regulation and genome maintenance by mammalian SIRT6. Trends Biochem Sci 2011;36:39-46.
- 49 Sebastián C, Zwaans BM, Silberman DM, Gymrek M, Goren A, Zhong L, et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 2012;151:1185-99.
- 50 Blank MF, Grummt I. The seven faces of SIRT7. Transcription 2017;8:67-74.
- 51 Kugel S, Mostoslavsky R. Chromatin and beyond: The multitasking roles for SIRT6. Trends Biochem Sci 2014;39:72-81.
- 52 Tsai YC, Greco TM, Boonmee A, Miteva Y, Cristea IM. Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription. Mol Cell Proteomics 2012;11:60-76.
- 53 Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001;107:149-59.
- 54 Feige JN, Auwerx J. Transcriptional targets of sirtuins in the coordination of mammalian physiology. Curr Opin Cell Biol 2008;20:303-9.
- 55 Dang W. The controversial world of sirtuins. Drug Discov Today Technol 2014;12:e9-e17.
- 56 Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 2002;418:797-801.
- 57 Hubbi ME, Hu H, Kshitiz, Gilkes DM, Semenza GL. Sirtuin-7 inhibits the activity of hypoxia-inducible factors. J Biol Chem 2013;288:20768-75.
- 58 Yeo EJ. Hypoxia and aging. Exp Mol Med 2019;51:67.
- 59 Jin J, Iakova P, Jiang Y, Medrano EE, Timchenko NA. The reduction of SIRT1 in livers of old mice leads to impaired body homeostasis and to inhibition of liver proliferation. Hepatology 2011;54:989-98.
- 60 Nohara K, Shin Y, Park N, Jeong K, He B, Koike N, et al. Ammonia-lowering activities and carbamoyl phosphate synthetase 1 (Cps1) induction mechanism of a natural flavonoid. Nutr Metab (Lond) 2015;12:23.
- 61 Lloret A, Beal MF. PGC-1α, Sirtuins and PARPs in Huntington's disease and other neurodegenerative conditions: NAD+ to Rule them all. Neurochem Res 2019;44:2423-34.
- 62 Dai H, Sinclair DA, Ellis JL, Steegborn C. Sirtuin activators and inhibitors: Promises, achievements, and challenges. Pharmacol Ther 2018;188:140-54.
- 63 Botta G, De Santis LP, Saladino R. Current advances in the synthesis and antitumoral activity of SIRT1-2 inhibitors by modulation of p53 and pro-apoptotic proteins. Curr Med Chem 2012;19:5871-84.
- 64 Carafa V, Rotili D, Forgione M, Cuomo F, Serretiello E, Hailu GS, et al. Sirtuin functions and modulation: From chemistry to the clinic. Clin Epigenetics 2016;8:61.
- 65 Miyo M, Yamamoto H, Konno M, Colvin H, Nishida N, Koseki J, et al. Tumour-suppressive function of SIRT4 in human colorectal cancer. Br J Cancer 2015;113:492-9.
- 66 Gertz M, Steegborn C. Using mitochondrial sirtuins as drug targets: Disease implications and available compounds. Cell Mol Life Sci 2016;73:2871-96.
- 67 Aubert G, Lansdorp PM. Telomeres and aging. Physiol Rev 2008;88:557-79.
- 68 Dominy JE Jr., Lee Y, Jedrychowski MP, Chim H, Jurczak MJ, Camporez JP, et al. The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Mol Cell 2012;48:900-13.
- 69 Das C, Lucia MS, Hansen KC, Tyler JK. CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 2009;459:113-7.
- 70 Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 2004;306:2105-8.
- 71 Yamakuchi M. MicroRNA Regulation of SIRT1. Front Physiol 2012;3:68.
- 72 Buler M, Andersson U, Hakkola J. Who watches the watchmen? Regulation of the expression and activity of sirtuins. FASEB J 2016;30:3942-60.
- 73 Guo X, Williams JG, Schug TT, Li X. DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1. J Biol Chem 2010;285:13223-32.
- 74 Yang Y, Fu W, Chen J, Olashaw N, Zhang X, Nicosia SV, et al. SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat Cell Biol 2007;9:1253-62.
- 75 Yi J, Luo J. SIRT1 and p53, effect on cancer, senescence and beyond. Biochim Biophys Acta 2010;1804:1684-9.
- 76 Lee BB, Kim Y, Kim D, Cho EY, Han J, Kim HK, et al. Metformin and tenovin-6 synergistically induces apoptosis through LKB1-independent SIRT1 down-regulation in non-small cell lung cancer cells. J Cell Mol Med 2019;23:2872-89.
- 77 Cantó C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M, et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 2010;11:213-9.
- 78 Barbosa MT, Soares SM, Novak CM, Sinclair D, Levine JA, Aksoy P, et al. The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity. FASEB J 2007;21:3629-39.
- 79 Chalkiadaki A, Guarente L. The multifaceted functions of sirtuins in cancer. Nat Rev Cancer 2015;15:608-24.
- 80 Sosnowska B, Mazidi M, Penson P, Gluba-Brzózka A, Rysz J, Banach M. The sirtuin family members SIRT1, SIRT3 and SIRT6: Their role in vascular biology and atherogenesis. Atherosclerosis 2017;265:275-82.
- 81 Sun W, Liu C, Chen Q, Liu N, Yan Y, Liu B. SIRT3: A new regulator of cardiovascular diseases. Oxid Med Cell Longev 2018;2018:7293861.
- 82 Lutz MI, Milenkovic I, Regelsberger G, Kovacs GG. Distinct patterns of sirtuin expression during progression of Alzheimer's disease. Neuromolecular Med 2014;16:405-14.
- 83 Park SY, Lee HR, Lee WS, Shin HK, Kim HY, Hong KW, et al. Cilostazol modulates autophagic degradation of ß-amyloid peptide via SIRT1-coupled LKB1/AMPKa signaling in neuronal cells. PLoS One 2016;11:e0160620-.
- 84 Yang W, Nagasawa K, Münch C, Xu Y, Satterstrom K, Jeong S, et al. Mitochondrial sirtuin network reveals dynamic SIRT3-dependent deacetylation in response to membrane depolarization. Cell 2016;167:985-1E+24.
- 85 van de Ven RAH, Santos D, Haigis MC. Mitochondrial sirtuins and molecular mechanisms of aging. Trends Mol Med 2017;23:320-31.
- 86 Bogan KL, Brenner C. Nicotinic acid, nicotinamide, and nicotinamide riboside: A molecular evaluation of NAD+precursor vitamins in human nutrition. Annu Rev Nutr 2008;28:115-30.
- 87 Katsyuba E, Auwerx J. Modulating NAD+metabolism, from bench to bedside. EMBO J 2017;36:2670-83.
- 88 Yoshino J, Baur JA, Imai SI. NAD+Intermediates: the biology and therapeutic potential of NMN and NR. Cell Metab 2018;27:513-28.
- 89 Mills KF, Yoshida S, Stein LR, Grozio A, Kubota S, Sasaki Y, et al. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab 2016;24:795-806.
- 90 Frederick DW, Loro E, Liu L, Davila A Jr., Chellappa K, Silverman IM, et al. Loss of NAD Homeostasis Leads to Progressive and Reversible Degeneration of Skeletal Muscle. Cell Metab 2016;24:269-82.
- 91 Martens CR, Denman BA, Mazzo MR, Armstrong ML, Reisdorph N, McQueen MB, et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+in healthy middle-aged and older adults. Nat Commun 2018;9:1286.
- 92 Denu JM. Vitamins and aging: Pathways to NAD+synthesis. Cell 2007;129:453-4.