Subscribe to RSS

DOI: 10.4103/ejgd.ejgd_90_18
Analysis of pH and cytotoxic activity of locally produced radiopaque white Portland cement

Abstract
Background: Portland cement (PC)-based formulations show continuous developments. Purpose: This study examined the pH and cytotoxic activity of a locally produced Malaysian white PC (MAWPC) mixed with different radiopacifying agents (barium sulfate [BS], niobium oxide [NO], and bismuth oxide [BO]) on human periodontal ligament fibroblasts (HPLFs). Materials and Methods: 0.8 g of MAWPC was mixed with 0.2 g of each radiopacifying agent and sterile distilled water. Five tablets of each group were prepared. After setting, the samples were immersed in 10-ml sterile distilled water and stored at 37°C, and the pH was measured at intervals of 0, 1, 3, 7, and 14 days using a calibrated digital pH meter. One-way ANOVA was used for data analysis (P = 0.05). For cytotoxic activity, the material extracts were prepared at three serial concentrations (25, 12.5, and 6.25 mg/ml), and 200 ml of each concentration was added into each well seeded with cultured HPLFs. The plates were then incubated for 48 h. The cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the data were analyzed using Kruskal–Wallis test (P = 0.05) Results: The pH values of all groups were significantly higher compared to the control group (P < 0.001). With the exception of day 0, the pH values of all groups at all day intervals ranged from 9.9 to 10.9, and some significant differences were detected. Although the addition of radiopacifying agents decreased the cell viability values of MAWPC extracts (P < 0.05), all groups showed favorable cytotoxicity profile. MAWPC/BO combination showed higher cell viability values compared to MAWPC/NO and MAWPC/BS. Conclusions: The addition of radiopacifying agents to MAWPC maintained its high pH and favored the viability of HPLFs.
Keywords
Barium sulfate - bismuth oxide - cell viability - cytotoxicity - human periodontal ligament fibroblasts - niobium oxide - pH value - Portland cementFinancial support and sponsorship
This study was supported by the USM short-term Grant number 304/PPSG/61312099.
Publication History
Article published online:
01 November 2021
© 2018. European Journal of General Dentistry. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 Parirokh M, Torabinejad M. Mineral trioxide aggregate: A comprehensive literature review – Part I: Chemical, physical, and antibacterial properties. J Endod 2010;36:16-27.
- 2 Kratchman SI. Perforation repair and one-step apexification procedures. Dent Clin North Am 2004;48:291-307.
- 3 Torabinejad M, Watson T, Ford TP. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Endod 1993;19:591-5.
- 4 Abdullah D, Ford TR, Papaioannou S, Nicholson J, McDonald F. An evaluation of accelerated Portland cement as a restorative material. Biomaterials 2002;23:4001-10.
- 5 Tziafas D, Kalyva M, Papadimitriou S. Experimental dentin-based approaches to tissue regeneration in vital pulp therapy. Connect Tissue Res 2002;43:391-5.
- 6 Main C, Mirzayan N, Shabahang S, Torabinejad M. Repair of root perforations using mineral trioxide aggregate: A long-term study. J Endod 2004;30:80-3.
- 7 Torabinejad M, Chivian N. Clinical applications of mineral trioxide aggregate. J Endod 1999;25:197-205.
- 8 Camilleri J, Montesin FE, Juszczyk AS, Papaioannou S, Curtis RV, Donald FM, et al. The constitution, physical properties and biocompatibility of modified accelerated cement. Dent Mater 2008;24:341-50.
- 9 Camilleri J, Montesin FE, Papaioannou S, McDonald F, Pitt Ford TR. Biocompatibility of two commercial forms of mineral trioxide aggregate. Int Endod J 2004;37:699-704.
- 10 Coomaraswamy KS, Lumley PJ, Hofmann MP. Effect of bismuth oxide radioopacifier content on the material properties of an endodontic Portland cement-based (MTA-like) system. J Endod 2007;33:295-8.
- 11 Bortoluzzi EA, Guerreiro-Tanomaru JM, Tanomaru-Filho M, Duarte MA. Radiographic effect of different radiopacifiers on a potential retrograde filling material. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;108:628-32.
- 12 Kim EC, Lee BC, Chang HS, Lee W, Hong CU, Min KS, et al. Evaluation of the radiopacity and cytotoxicity of Portland cements containing bismuth oxide. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;105:e54-7.
- 13 Orucoglu H, Cobankara FK. Effect of unintentionally extruded calcium hydroxide paste including barium sulfate as a radiopaquing agent in treatment of teeth with periapical lesions: Report of a case. J Endod 2008;34:888-91.
- 14 Leitune VC, Takimi A, Collares FM, Santos PD, Provenzi C, Bergmann CP, et al. Niobium pentoxide as a new filler for methacrylate-based root canal sealers. Int Endod J 2013;46:205-10.
- 15 Karlinsey RL, Hara AT, Yi K, Duhn CW. Bioactivity of novel self-assembled crystalline nb2O5 microstructures in simulated and human salivas. Biomed Mater 2006;1:16-23.
- 16 Available from: http://www.aalborgportland.com.my/default.aspx?m=2 &i=62. [Last accessed on 2018 May 14].
- 17 Ahmed HM, Luddin N, Kannan TP, Mokhtar KI, Ahmad A. Chemical analysis and biological properties of two different formulations of white Portland cements. Scanning 2016;38:303-16.
- 18 Ahmed HM, Luddin N, Kannan TP, Mokhtar KI, Ahmad A. Dentinogenic differentiation potential of fast set white Portland cements of a different origin on dental pulp stem cells. Eur J Gen Dent 2017;6:115-22.
- 19 Zhang W, Li Z, Peng B. Ex vivo cytotoxicity of a new calcium silicate-based canal filling material. Int Endod J 2010;43:769-74.
- 20 Camilleri J. Evaluation of the physical properties of an endodontic portland cement incorporating alternative radiopacifiers used as root-end filling material. Int Endod J 2010;43:231-40.
- 21 Guerreiro-Tanomaru JM, Cornélio AL, Andolfatto C, Salles LP, Tanomaru-Filho M. PH and antimicrobial activity of Portland cement associated with different radiopacifying agents. ISRN Dent 2012;2012:469019.
- 22 Guerreiro Tanomaru JM, Storto I, Da Silva GF, Bosso R, Costa BC, Bernardi MI, et al. Radiopacity, pH and antimicrobial activity of Portland cement associated with micro- and nanoparticles of zirconium oxide and niobium oxide. Dent Mater J 2014;33:466-70.
- 23 Chen YZ, Lü XY, Liu GD. Effects of different radio-opacifying agents on physicochemical and biological properties of a novel root-end filling material. PLoS One 2018;13:e0191123.
- 24 Weckwerth PH, Machado AC, Kuga MC, Vivan RR, Polleto Rda S, Duarte MA, et al. Influence of radiopacifying agents on the solubility, pH and antimicrobial activity of Portland cement. Braz Dent J 2012;23:515-20.
- 25 Keiser K, Johnson CC, Tipton DA. Cytotoxicity of mineral trioxide aggregate using human periodontal ligament fibroblasts. J Endod 2000;26:288-91.
- 26 Gomes Cornélio AL, Salles LP, Campos da Paz M, Cirelli JA, Guerreiro-Tanomaru JM, Tanomaru Filho M, et al. Cytotoxicity of Portland cement with different radiopacifying agents: A cell death study. J Endod 2011;37:203-10.
- 27 Watts JD, Holt DM, Beeson TJ, Kirkpatrick TC, Rutledge RE. Effects of pH and mixing agents on the temporal setting of tooth-colored and gray mineral trioxide aggregate. J Endod 2007;33:970-3.
- 28 Grandia F, Merino J, Amphos JB. Assessment of the Radium-Barium Co-Precipitation and its Potential Influence on the Solubility of Ra in the Near-Field. Sweden: SKB Stockholm; 2008.
- 29 Gollop R, Taylor H. Microstructural and microanalytical studies of sulfate attack. II. Sulfate-resisting Portland cement: Ferrite composition and hydration chemistry. Cem Concr Res 1994;24:1347-58.
- 30 Khalil I, Isaac J, Chaccar C, Sautier JM, Berdal A, Naaman N, Naaman A. Biocompatibility assessment of modified Portland cement in comparison with MTA:In vivo and in vitro studies. Saudi Endod J 2012;2:6-13.
- 31 Ochsenbein A, Chai F, Winter S, Traisnel M, Breme J, Hildebrand HF. Osteoblast responses to different oxide coatings produced by the sol-gel process on titanium substrates. Acta Biomater 2008;4:1506-17.
- 32 Mestieri LB, Tanomaru-Filho M, Gomes-Cornélio AL, Salles LP, Bernardi MI, Guerreiro-Tanomaru JM, et al. Radiopacity and cytotoxicity of Portland cement associated with niobium oxide micro and nanoparticles. J Appl Oral Sci 2014;22:554-9.