CC BY-NC-ND 4.0 · European Journal of General Dentistry 2020; 9(02): 79-83
DOI: 10.4103/ejgd.ejgd_137_19
Original Article

Antimicrobial evaluation, degree of solubility, and water sorption of universal dental adhesive incorporated with epigallocatechin-3-gallate: An In-vitro study

Paulo Goberlânio Barros Silva
Department of Dentistry, Christus University Center (Unichristus), Fortaleza, CE, Brazil
,
Caroline Nágila Do Nascimento Terto
Department of Dentistry, Christus University Center (Unichristus), Fortaleza, CE, Brazil
,
Rebeca Da Cunha Andrade
Department of Dentistry, Christus University Center (Unichristus), Fortaleza, CE, Brazil
,
Argus Ramom Rolim Fernandes
Department of Dentistry, Christus University Center (Unichristus), Fortaleza, CE, Brazil
,
Juliana Paiva Marques Lima Rolim
Department of Dentistry, Christus University Center (Unichristus), Fortaleza, CE, Brazil
,
Jiovanne Rabelo Neri
Department of Dentistry, Christus University Center (Unichristus), Fortaleza, CE, Brazil
› Author Affiliations
Financial support and sponsorship Nil.

Abstract

Background: Several strategies have been developed to reduce collagen degradation in the adhesive interface. Epigallocatechin3gallate (EGCG) has the ability to stabilize collagen, and it is effective in microbial reduction. Aims and Objectives: The objective of the present study was to evaluate the antimicrobial potential, water sorption (WS), and solubility of a universal adhesive incorporated with EGCG at concentrations of 0.02%, 0.1%, and 0.5%, respectively. Materials and Methods: Atotal of 40 specimens of composite resin disks, to which the adhesives were applied, were divided into four groups: control (without EGCG), 0.02%, 0.1%, and 0.5%. The specimens were submitted to an in vitro cariogenic challenge, inoculated with Streptococcus mutans for 3 days for biofilm formation. The generated biofilm was collected, and the colonyforming units were established. For the solubility test, the specimens using the adhesive were divided into the same groups mentioned previously (n = 10). Adhesive models were made following an ISO standard for sorption and solubility tests. Microbiological data were submitted to the analysis of variance (ANOVA), followed by the Tukey test (P < 0.05). ANOVA was used to evaluate WS and solubility, and comparisons were made by post hoc analysis by the Student–Newman–Keuls method (P < 0.05). Results: A statistical difference was observed regarding the antimicrobial potential between the groups without and with EGCG at 0.5% (P = 0.03). EGCG 0.5% presented the highest values of solubility and WS (P < 0.01 and P = 0.009, respectively). Conclusion: The addition of 0.5% EGCG was capable of inhibiting biofilm formation; however, it caused significant alteration of the solubility and sorption of the adhesive.



Publication History

Article published online:
01 November 2021

© 2020. European Journal of General Dentistry. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Perdigão J. New developments in dental adhesion. Dent Clin North Am 2007;51:333-57, viii.
  • 2 Van Meerbeek B, De Munck J, Yoshida Y, Inoue S, Vargas M, Vijay P, et al. Adhesion to enamel and dentin: Current status and future challenges. Oper Dent 2003;28:215-35.
  • 3 Khamverdi Z, Rezaei-Soufi L, Rostamzadeh T. The effect of epigallocatechin gallate on the dentin bond durability of two self-etch adhesives. J Dent (Shiraz) 2015;16:68-74.
  • 4 García-Godoy F, Tay FR, Pashley DH, Feilzer A, Tjäderhane L, Pashley EL. Degradation of resin-bonded human dentin after 3 years of storage. Am J Dent 2007;20:109-13.
  • 5 Shono Y, Terashita M, Shimada J, Kozono Y, Carvalho RM, Russell CM, et al. Durability of resin-dentin bonds. J Adhes Dent 1999;1:211-8.
  • 6 Pashley DH, Carvalho RM. Dentine permeability and dentine adhesion. J Dent 1997;25:355-72.
  • 7 Tay FR, Pashley DH, Garcìa-Godoy F, Yiu CK. Single-step, self-etch adhesives behave as permeable membranes after polymerization. Part II. Silver tracer penetration evidence. Am J Dent 2004;17:315-22.
  • 8 Salz U, Zimmermann J, Zeuner F, Moszner N. Hydrolytic stability of self-etching adhesive systems. J Adhes Dent 2005;7:107-16.
  • 9 Jacobsen T, Söderholm KJ. Some effects of water on dentin bonding. Dent Mater 1995;11:132-6.
  • 10 Ikeda T, De Munck J, Shirai K, Hikita K, Inoue S, Sano H, et al. Effect of evaporation of primer components on ultimate tensile strengths of primer-adhesive mixture. Dent Mater 2005;21:1051-8.
  • 11 Ito S, Hashimoto M, Wadgaonkar B, Svizero N, Carvalho RM, Yiu C, et al. Effects of resin hydrophilicity on water sorption and changes in modulus of elasticity. Biomaterials 2005;26:6449-59.
  • 12 Martins DO, Vasconcelos MR, Portela AI. Antimicrobial agents in adhesive systems. Rev Bras Odontol 2014;71:130-4.
  • 13 Du X, Huang X, Huang C, Wang Y, Zhang Y. Epigallocatechin-3-gallate (EGCG) enhances the therapeutic activity of a dental adhesive. J Dent 2012;40:485-92.
  • 14 Cheng XW, Kuzuya M, Kanda S, Maeda K, Sasaki T, Wang QL, et al. Epigallocatechin-3-gallate binding to MMP-2 inhibits gelatinolytic activity without influencing the attachment to extracellular matrix proteins but enhances MMP-2 binding to TIMP-2. Arch Biochem Biophys 2003;415:126-32.
  • 15 Martin-De Las Heras S, Valenzuela A, Overall CM. The matrix metalloproteinase gelatinase A in human dentine. Arch Oral Biol 2000;45:757-65.
  • 16 Hannas AR, Pereira JC, Granjeiro JM, Tjäderhane L. The role of matrix metalloproteinases in the oral environment. Acta Odontol Scand 2007;65:1-3.
  • 17 Yu HH, Zhang L, Yu F, Li F, Liu ZY, Chen JH. Epigallocatechin-3-gallate and Epigallocatechin-3-O-(3-O-methyl)-gallate Enhance the Bonding Stability of an Etch-and-Rinse Adhesive to Dentin. Materials (Basel) 2017;10:183.
  • 18 Demeule M, Brossard M, Pagé M, Gingras D, Béliveau R. Matrix metalloproteinase inhibition by green tea catechins. Biochim Biophys Acta 2000;1478:51-60.
  • 19 Dell’Aica I, Caniato R, Biggin S, Garbisa S. Matrix proteases, green tea, and St. John’s wort: Biomedical research catches up with folk medicine. Clin Chim Acta 2007;381:69-77.
  • 20 Yoo S, Murata RM, Duarte S. Antimicrobial traits of tea- and cranberry-derived polyphenols against Streptococcus mutans. Caries Res 2011;45:327-35.
  • 21 Malacarne J, Carvalho RM, de Goes MF, Svizero N, Pashley DH, Tay FR, et al. Water sorption/solubility of dental adhesive resins. Dent Mater 2006;22:973-80.
  • 22 Melo MA, Rolim JP, Zanin IC, Barros EB, da-Costa EF, Rodrigues LK. Characterization of antimicrobial photodynamic therapy-treated Streptococci mutans: An atomic force microscopy study. Photomed Laser Surg 2013;31:105-9.
  • 23 Ito S, Hoshino T, Iijima M, Tsukamoto N, Pashley DH, Saito T. Water sorption/solubility of self-etching dentin bonding agents. Dent Mater 2010;26:617-26.
  • 24 Neri JR, Yamauti M, Feitosa VP, Pires AP, Araújo Rdos S, Santiago SL. Physicochemical properties of a methacrylate-based dental adhesive incorporated with epigallocatechin-3-gallate. Braz Dent J 2014;25:528-31.
  • 25 Xu X, Zhou XD, Wu CD. The tea catechin epigallocatechin gallate suppresses cariogenic virulence factors of Streptococcus mutans. Antimicrob Agents Chemother 2011;55:1229-36.
  • 26 Xu X, Zhou XD, Wu CD. Tea catechin epigallocatechin gallate inhibits Streptococcus mutansbiofilm formation by suppressing gtf genes. Arch Oral Biol 2012;57:678-83.
  • 27 de Assis JS, Lima RA, Marques Lima JP, Azevedo Rodrigues LK, Santiago SL. Effect of epigallocatechin-3-gallate application for remaining carious dentin disinfection. J Conserv Dent 2015;18:51-5.
  • 28 Fonseca BM, Barcellos DC, Silva TM, Borges AL, Cavalcanti BD, Prakki A, et al. Mechanical-physicochemical properties and biocompatibility of catechin-incorporated adhesive resins. J Appl Oral Sci 2019;27:e20180111.
  • 29 Pallan S, Furtado Araujo MV, Cilli R, Prakki A. Mechanical properties and characteristics of developmental copolymers incorporating catechin or chlorhexidine. Dent Mater 2012;28:687-94.
  • 30 Lambert JD, Sang S, Hong J, Kwon SJ, Lee MJ, Ho CT, et al. Peracetylation as a means of enhancingin vitrobioactivity and bioavailability of epigallocatechin-3-gallate. Drug Metab Dispos 2006;34:2111-6.
  • 31 Kim WJ, Kim JD, Kim J, Oh SG, Lew YW. Selective caffeine removal from green tea using supercritical carbon dioxide extraction. J Food Eng 2008;89:303-9.
  • 32 Porto IC, de Aguiar FH, Brandt WC, Liporoni PC. Mechanical and physical properties of silorane and methacrylate-based composites. J Dent 2013;41:732-9.