CC BY-NC-ND 4.0 · Asian J Neurosurg 2020; 15(02): 266-271
DOI: 10.4103/ajns.AJNS_296_19
Review Article

The ethical dilemma in the surgical management of low grade gliomas according to the variable availability of resources and surgeon experience

Marshall Lahiff
1   School of Law, University of Miami
2   Walton Lantaff Schoreder and Carson LLP, Miami, Florida
,
Michael Ghali
3   Department of Neurological Surgery, Houston Methodist Hospital, Houston, Texas
4   Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
› Author Affiliations

Low grade gliomas (LGGs) affect young individuals in the prime of life. Management may alternatively include biopsy and observation or surgical resection. Recent evidence strongly favors maximal and supramaximal resection of LGGs in optimizing survival metrics. Awake craniotomy with cortical mapping and electrical stimulation along with other preoperative and intraoperative surgical adjuncts, including intraoperative magnetic resonance and diffusion tensor imaging, facilitates maximization of resection and eschews precipitating neurological deficits. Intraoperative imaging permits additional resection of identified residual to be completed within the same surgical session, improving extent of resection and consequently progression free and overall survival. These resources are available in only a few centers throughout the United States, raising an ethical dilemma as to where patients harboring LGGs should most appropriately be treated.

Financial support and sponsorship

Nil.




Publication History

Received: 26 September 2019

Accepted: 20 December 2019

Article published online:
16 August 2022

© 2020. Asian Congress of Neurological Surgeons. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 McKhann GM, Duffau H. Low-grade glioma: Epidemiology, pathophysiology, clinical features, and treatment. Neurosurg Clin N Am 2019;30:xiii-xiv.
  • 2 Diwanji TP, Engelman A, Snider JW, Mohindra P. Epidemiology, diagnosis, and optimal management of glioma in adolescents and young adults. Adolesc Health Med Ther 2017;8:99-113.
  • 3 Claus EB, Walsh KM, Wiencke JK, Molinaro AM, Wiemels JL, Schildkraut JM, et al. Survival and low-grade glioma: The emergence of genetic information. Neurosurg Focus 2015;38:E6.
  • 4 Duffau H. Long-term outcomes after supratotal resection of diffuse low-grade gliomas: A consecutive series with 11-year follow-up. Acta Neurochir (Wien) 2016;158:51-8.
  • 5 Duffau H. Awake mapping is not an additional surgical technique but an alternative philosophy in the management of low-grade glioma patients. Neurosurg Rev 2018;41:689-91.
  • 6 Lima GL, Dezamis E, Corns R, Rigaux-Viode O, Moritz-Gasser S, Roux A, et al. Surgical resection of incidental diffuse gliomas involving eloquent brain areas. Rationale, functional, epileptological and oncological outcomes. Neurochirurgie 2017;63:250-8.
  • 7 Incekara F, Olubiyi O, Ozdemir A, Lee T, Rigolo L, Golby A. The value of pre- and intraoperative adjuncts on the extent of resection of hemispheric low-grade gliomas: A retrospective analysis. J Neurol Surg A Cent Eur Neurosurg 2016;77:79-87.
  • 8 Leuthardt EC, Lim CC, Shah MN, Evans JA, Rich KM, Dacey RG, et al. Use of movable high-field-strength intraoperative magnetic resonance imaging with awake craniotomies for resection of gliomas: Preliminary experience. Neurosurgery 2011;69:194-205.
  • 9 Lu J, Wu J, Yao C, Zhuang D, Qiu T, Hu X, et al. Awake language mapping and 3-Tesla intraoperative MRI-guided volumetric resection for gliomas in language areas. J Clin Neurosci 2013;20:1280-7.
  • 10 Nabavi A, Goebel S, Doerner L, Warneke N, Ulmer S, Mehdorn M. Awake craniotomy and intraoperative magnetic resonance imaging: Patient selection, preparation, and technique. Top Magn Reson Imaging 2009;19:191-6.
  • 11 Tuominen J, Yrjänä S, Ukkonen A, Koivukangas J. Awake craniotomy may further improve neurological outcome of intraoperative MRI-guided brain tumor surgery. Acta Neurochir (Wien) 2013;155:1805-12.
  • 12 Weingarten DM, Asthagiri AR, Butman JA, Sato S, Wiggs EA, Damaska B, et al. Cortical mapping and frameless stereotactic navigation in the high-field intraoperative magnetic resonance imaging suite. J Neurosurg 2009;111:1185-90.
  • 13 Goebel S, Nabavi A, Schubert S, Mehdorn HM. Patient perception of combined awake brain tumor surgery and intraoperative 1.5-T magnetic resonance imaging: The Kiel experience. Neurosurgery 2010;67:594-600.
  • 14 Parney IF, Goerss SJ, McGee K, Huston J 3rd, Perkins WJ, Meyer FB. Awake craniotomy, electrophysiologic mapping, and tumor resection with high-field intraoperative MRI. World Neurosurg 2010;73:547-51.
  • 15 Maldaun MV, Khawja SN, Levine NB, Rao G, Lang FF, Weinberg JS, et al. Awake craniotomy for gliomas in a high-field intraoperative magnetic resonance imaging suite: Analysis of 42 cases. J Neurosurg 2014;121:810-7.
  • 16 Choudhri AF, KlimoPJr., Auschwitz TS, Whitehead MT, Boop FA. 3T intraoperative MRI for management of pediatric CNS neoplasms. AJNR Am J Neuroradiol 2014;35:2382-7.
  • 17 Roder C, Breitkopf M, Ms, Bisdas S, Freitas Rda S, Dimostheni A, et al. Beneficial impact of high-field intraoperative magnetic resonance imaging on the efficacy of pediatric low-grade glioma surgery. Neurosurg Focus 2016;40:E13.
  • 18 Ghinda D, Zhang N, Lu J, Yao CJ, Yuan S, Wu JS. Contribution of combined intraoperative electrophysiological investigation with 3-T intraoperative MRI for awake cerebral glioma surgery: Comprehensive review of the clinical implications and radiological outcomes. Neurosurg Focus 2016;40:E14.
  • 19 Claus EB, Horlacher A, Hsu L, Schwartz RB, Dello-Iacono D, Talos F,et al. Survival rates in patients with low-grade glioma after intraoperative magnetic resonance image guidance. Cancer 2005;103:1227-33.
  • 20 Izutsu N, Kinoshita M, Yanagisawa T, Nakanishi K, Sakai M, Kishima H. Preservation of motor function after resection of lower-grade glioma at the precentral gyrus and prediction by presurgical functional magnetic resonance imaging and magnetoencephalography. World Neurosurg 2017;107:1045:e5-8.
  • 21 Berntsen EM, Gulati S, Solheim O, Kvistad KA, Torp SH, Selbekk T, et al. Functional magnetic resonance imaging and diffusion tensor tractography incorporated into an intraoperative 3-dimensional ultrasound-based neuronavigation system: Impact on therapeutic strategies, extent of resection, and clinical outcome. Neurosurgery 2010;67:251-64.
  • 22 Kumar A, Chandra PS, Sharma BS, Garg A, Rath GK, Bithal PK, et al. The role of neuronavigation-guided functional MRI and diffusion tensor tractography along with cortical stimulation in patients with eloquent cortex lesions. Br J Neurosurg 2014;28:226-33.
  • 23 Lu JF, Zhang H, Wu JS, Yao CJ, Zhuang DX, Qiu TM, et al. “Awake” intraoperative functional MRI (ai-fMRI) for mapping the eloquent cortex: Is it possible in awake craniotomy? Neuroimage Clin 2012;2:132-42.
  • 24 Bello L, Castellano A, Fava E, Casaceli G, Riva M, Scotti G, et al. Intraoperative use of diffusion tensor imaging fiber tractography and subcortical mapping for resection of gliomas: Technical considerations. Neurosurg Focus 2010;28:E6.
  • 25 Darlix A, Mandonnet E, Freyschlag CF, Pinggera D, Forster MT, Voss M, et al. Chemotherapy and diffuse low-grade gliomas: A survey within the European Low-Grade Glioma Network. Neurooncol Pract 2019;6:264-73.
  • 26 Yan JL, van der Hoorn A, Larkin TJ, Boonzaier NR, Matys T, Price SJ. Extent of resection of peritumoral diffusion tensor imaging-detected abnormality as a predictor of survival in adult glioblastoma patients. J Neurosurg 2017;126:234-41.
  • 27 Castellano A, Bello L, Michelozzi C, Gallucci M, Fava E, Iadanza A, et al. Role of diffusion tensor magnetic resonance tractography in predicting the extent of resection in glioma surgery. Neuro Oncol 2012;14:192-202.
  • 28 Mirza AF, Shamim MS. Extent of resection and timing of surgery in adult low grade glioma. J Pak Med Assoc 2017;67:959-61.
  • 29 Al-Tamimi YZ, Palin MS, Patankar T, MacMullen-Price J, O'Hara DJ, Loughrey C, et al. Low-grade glioma with foci of early transformation does not necessarily require adjuvant therapy after radical surgical resection. World Neurosurg 2018;110:e346-54.
  • 30 Chang EF, Potts MB, Keles GE, Lamborn KR, Chang SM, Barbaro NM, et al. Seizure characteristics and control following resection in 332 patients with low-grade gliomas. J Neurosurg 2008;108:227-35.
  • 31 Corrivetti F, Herbet G, Moritz-Gasser S, Duffau H. Prosopagnosia induced by a left anterior temporal lobectomy following a right temporo-occipital resection in a multicentric diffuse low-grade glioma. World Neurosurg 2017;97:756.e1-5.
  • 32 Duffau H. Is non-awake surgery for supratentorial adult low-grade glioma treatment still feasible? Neurosurg Rev 2018a; 41:133-9.
  • 33 Duffau H. Paradoxes of evidence-based medicine in lower-grade glioma: To treat the tumor or the patient? Neurology 2018b; 91:657-62.
  • 34 Duffau H. Diffuse low-grade glioma, oncological outcome and quality of life: A surgical perspective. Curr Opin Oncol 2018c; 30:383-9.
  • 35 Englot DJ, Han SJ, Berger MS, Barbaro NM, Chang EF. Extent of surgical resection predicts seizure freedom in low-grade temporal lobe brain tumors. Neurosurgery 2012;70:921-8.
  • 36 Hendriks EJ, Idema S, Hervey-Jumper SL, Bernat AL, Zwinderman AH, Barkhof F, et al. Preoperative resectability estimates of nonenhancing glioma by neurosurgeons and a resection probability map. Neurosurgery 2019;85:E304-13.
  • 37 Jakola AS, Myrmel KS, Kloster R, Torp SH, Lindal S, Unsgård G, et al. Comparison of a strategy favoring early surgical resection vs. a strategy favoring watchful waiting in low-grade gliomas. JAMA 2012;308:1881-8.
  • 38 Jo J, Williams B, Smolkin M, Wintermark M, Shaffrey ME, Lopes MB, et al. Effect of neoadjuvant temozolomide upon volume reduction and resection of diffuse low-grade glioma. J Neurooncol 2014;120:155-61.
  • 39 McGirt MJ, Chaichana KL, Attenello FJ, Weingart JD, Than K, Burger PC, et al. Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating lowgrade gliomas. Neurosurgery 2008;63:700-7.
  • 40 Picart T, Herbet G, Moritz-Gasser S, Duffau H. Iterative Surgical Resections of Diffuse Glioma With Awake Mapping: How to Deal With Cortical Plasticity and Connectomal Constraints? Neurosurgery 2019;85:105-16.
  • 41 Picart T, Duffau H. Awake resection of a left operculo-insular low-grade glioma guided by cortico-subcortical mapping. Neurosurg Focus 2018;45:V1.
  • 42 Smith JS, Chang EF, Lamborn KR, Chang SM, Prados MD, Cha S, et al. Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol 2008;26:1338-45.
  • 43 Still ME, Roux A, Huberfeld G, Bauchet L, Baron MH, Fontaine D, et al. Extent of resection and residual tumor thresholds for postoperative total seizure freedom in epileptic adult patients harboring a supratentorial diffuse low-grade glioma. Neurosurgery 2019;85:E332-40.
  • 44 Yordanova YN, Moritz-Gasser S, Duffau H. Awake surgery for WHO Grade II gliomas within “noneloquent” areas in the left dominant hemisphere: Toward a “supratotal” resection. Clinical article. J Neurosurg 2011;115:232-9.
  • 45 Best B, Nguyen HS, Doan NB, Gelsomino M, Shabani S, Ahmadi Jazi G, et al. Gliomas: Survival differences between metropolitan and non-metropolitan counties. J Neurosurg Sci 2019;63:114-120.
  • 46 Almairac F, Duffau H, Herbet G. Contralesional macrostructural plasticity of the insular cortex in patients with glioma: A VBM study. Neurology 2018;91:e1902-8.
  • 47 Vanacôr C, Duffau H. Analysis of legal, cultural, and socioeconomic parameters in low-grade glioma management: Variability across countries and implications for awake surgery. World Neurosurg 2018;120:47-53.
  • 48 Coget A, Deverdun J, Bonafé A, van Dokkum L, Duffau H, Molino F, et al. Transient immediate postoperative homotopic functional disconnectivity in low-grade glioma patients. Neuroimage Clin 2018;18:656-62.
  • 49 Mandonnet E, Duffau H. An attempt to conceptualize the individual onco-functional balance: Why a standardized treatment is an illusion for diffuse low-grade glioma patients. Crit Rev Oncol Hematol 2018;122:83-91.
  • 50 Peeters S, Pagès M, Gauchotte G, Miquel C, Cartalat-Carel S, Guillamo JS, et al. Interactions between glioma and pregnancy: Insight from a 52-case multicenter series. J Neurosurg 2018;128:3-13.
  • 51 Oberheim Bush NA, Chang S. Treatment Strategies for Low-Grade Glioma in Adults. J Oncol Pract 2016;12:1235-41.
  • 52 Tovar-Spinoza Z, Choi H. MRI-guided laser interstitial thermal therapy for the treatment of low-grade gliomas in children: A case-series review, description of the current technologies and perspectives. Childs Nerv Syst 2016;32:1947-56.
  • 53 Kaya V, Aksu MG, Korcum AF, Ozdemir B, Ceçen Y, Sindir B, et al. Clinical prognostic factors of adjuvant radiation therapy for low-grade gliomas: Results of 10 years survival. Int J Clin Exp Med 2014;7:1336-43.
  • 54 Hurwitz MD. Today's thermal therapy: Not your father's hyperthermia: Challenges and opportunities in application of hyperthermia for the 21st century cancer patient. Am J Clin Oncol 2010;33:96-100.
  • 55 Schwarzmaier HJ, Eickmeyer F, von Tempelhoff W, Fiedler VU, Niehoff H, Ulrich SD, et al. MR-guided laser-induced interstitial thermotherapy of recurrent glioblastoma multiforme: Preliminary results in 16 patients. Eur J Radiol 2006;59:208-15.
  • 56 Sloan AE, Ahluwalia MS, Valerio-Pascua J, Manjila S, Torchia MG, Jones SE, et al. Results of the NeuroBlate System first-in-humans Phase I clinical trial for recurrent glioblastoma: Clinical article. J Neurosurg 2013;118:1202-19.
  • 57 Mohammadi AM, Hawasli AH, Rodriguez A, Schroeder JL, Laxton AW, Elson P, et al. The role of laser interstitial thermal therapy in enhancing progression-free survival of difficult-to-access high-grade gliomas: A multicenter study. Cancer Med 2014;3:971-9.
  • 58 Carpentier A, Chauvet D, Reina V, Beccaria K, Leclerq D, McNichols RJ, et al. MR-guided laser-induced thermal therapy (LITT) for recurrent glioblastomas. Lasers Surg Med 2012;44:361-8.
  • 59 Reijneveld JC, Sitskoorn MM, Klein M, Nuyen J, Taphoorn MJ. Cognitive status and quality of life in patients with suspected versus proven low-grade gliomas. Neurology 2001;56:618-23.
  • 60 Jakola AS, Skjulsvik AJ, Myrmel KS, Sjåvik K, Unsgård G, Torp SH, et al. Surgical resection versus watchful waiting in low-grade gliomas. Ann Oncol 2017;28:1942-8.
  • 61 Tovar-Spinoza Z, Choi H. MRI-guided laser interstitial thermal therapy for the treatment of low-grade gliomas in children: A case-series review, description of the current technologies and perspectives. Childs Nerv Syst.2016;32:1947-56.
  • 62 Roelz R, Strohmaier D, Jabbarli R, Kraeutle R, Egger K, Coenen VA, et al. Residual tumor volume as best outcome predictor in low grade glioma – A nine-years near-randomized survey of surgery vs. biopsy. Sci Rep 2016;6:32286.
  • 63 You G, Huang L, Yang P, Zhang W, Yan W, Wang Y, et al. Clinical and molecular genetic factors affecting postoperative seizure control of 183 Chinese adult patients with low-grade gliomas. Eur J Neurol 2012;19:298-306.
  • 64 Gunnarsson T, Olafsson E, Sighvatsson V, Hannesson B. Surgical treatment of patients with low-grade astrocytomas and medically intractable seizures. Acta Neurol Scand 2002;105:289-92.
  • 65 Gulati S, Jakola AS, Nerland US, Weber C, Solheim O. The risk of getting worse: surgically acquired deficits, perioperative complications, and functional outcomes after primary resection of glioblastoma. World Neurosurg 2011;76:572-9.
  • 66 Mikuni N, Okada T, Enatsu R, Miki Y, Hanakawa T, Urayama S,et al. Clinical impact of integrated functional neuronavigation and subcortical electrical stimulation to preserve motor function during resection of brain tumors. J Neurosurg 2007;106:593-8.
  • 67 Alimohamadi M, Shirani M, Shariat Moharari R, Pour-Rashidi A, Ketabchi M, Khajavi M, et al. Application of awake craniotomy and intraoperative brain mapping for surgical resection of insular gliomas of the dominant hemisphere. World Neurosurg 2016;92:151-8.
  • 68 Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ, et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: A randomised controlled multicentre phase III trial. Lancet Oncol 2006;7:392-401.
  • 69 Schucht P, Beck J, Abu-Isa J, Andereggen L, Murek M, Seidel K, et al. Gross total resection rates in contemporary glioblastoma surgery: Results of an institutional protocol combining 5-aminolevulinic acid intraoperative fluorescence imaging and brain mapping. Neurosurgery 2012;71:927-35.
  • 70 Sanai N, Snyder LA, Honea NJ, Coons SW, Eschbacher JM, Smith KA, et al. Intraoperative confocal microscopy in the visualization of 5-aminolevulinic acid fluorescence in low-grade gliomas. J Neurosurg 2011b;115:740-8.
  • 71 Chan DT, Yi-Pin Sonia H, Poon WS. 5-Aminolevulinic acid fluorescence guided resection of malignant glioma: Hong Kong experience. Asian J Surg 2018;41:467-72.
  • 72 Titsworth WL, Scott RM, Smith ER. National analysis of 2454 pediatric moyamoya admissions and the effect of hospital volume on outcomes. Stroke 2016;47:1303-11.
  • 73 Kalani MY, Rangel-Castilla L, Ramey W, Nakaji P, Albuquerque FC, McDougall CG, et al. Indications and results of direct cerebral revascularization in the modern era. World Neurosurg 2015;83:345-50.
  • 74 Bokhari AR, Davies MA, Diamond T. Endoscopic transsphenoidal pituitary surgery: A single surgeon experience and the learning curve. Br J Neurosurg 2013;27:44-9.
  • 75 Amato L, Colais P, Davoli M, Ferroni E, Fusco D, Minozzi S, et al. Volume and health outcomes: Evidence from systematic reviews and from evaluation of Italian hospital data. Epidemiol Prev 2013;37:1-00.
  • 76 Archampong D, Borowski D, Wille-Jørgensen P, Iversen LH. Workload and surgeon's specialty for outcome after colorectal cancer surgery. Cochrane Database Syst Rev 2012;3:CD005391.
  • 77 Modrall JG, Rosero EB, Chung J, Arko FR 3rd, Valentine RJ, Clagett GP, et al. Defining the type of surgeon volume that influences the outcomes for open abdominal aortic aneurysm repair. J Vasc Surg 2011;54:1599-604.
  • 78 Modrall JG, Minter RM, Minhajuddin A, Eslava-Schmalbach J, Joshi GP, Patel S, et al. The surgeon volume-outcome relationship: not yet ready for policy. Ann Surg 2018;267:863-7.
  • 79 Young EL, Holt PJ, Poloniecki JD, Loftus IM, Thompson MM. Meta-analysis and systematic review of the relationship between surgeon annual caseload and mortality for elective open abdominal aortic aneurysm repairs. J Vasc Surg 2007;46:1287-94.
  • 80 Rogers SO Jr., Gawande AA, Kwaan M, Puopolo AL, Yoon C, Brennan TA, et al. Analysis of surgical errors in closed malpractice claims at 4 liability insurers. Surgery 2006;140:25-33.
  • 81 Somville FJ, van Sprundel M, Somville J. Analysis of surgical errors in malpractice claims in Belgium. Acta Chir Belg 2010;110:11-8.
  • 82 Schmidt CM, Turrini O, Parikh P, House MG, Zyromski NJ, Nakeeb A, et al. Effect of hospital volume, surgeon experience, and surgeon volume on patient outcomes after pancreaticoduodenectomy: A single-institution experience. Arch Surg 2010;145:634-40.
  • 83 Goh BK, Teo JY, Lee SY, Kam JH, Cheow PC, Jeyaraj P, et al. Critical appraisal of the impact of individual surgeon experience on the outcomes of laparoscopic liver resection in the modern era: Collective experience of multiple surgeons at a single institution with 324 consecutive cases. Surg Endosc 2018;32:1802-11.
  • 84 Gani F, Cerullo M, Zhang X, Canner JK, Conca-Cheng A, Hartzman AE, et al. Effect of surgeon “experience” with laparoscopy on postoperative outcomes after colorectal surgery. Surgery 2017;162:880-90.
  • 85 Fossati N, Di Trapani E, Gandaglia G, Dell'Oglio P, Umari P, Buffi NM, et al. Assessing the impact of surgeon experience on urinary continence recovery after robot-assisted radical prostatectomy: Results of four high-volume surgeons. J Endourol 2017;31:872-7.
  • 86 Lhuillier L, Jeancolas AL, Renaudin L, Goetz C, Ameloot F, Premy S, et al. Impact of ophthalmic surgeon experience on early postoperative central corneal thickness after cataract surgery. Cornea 2017;36:541-5.
  • 87 Hobbs MS, Mai Q, Knuiman MW, Fletcher DR, Ridout SC. Surgeon experience and trends in intraoperative complications in laparoscopic cholecystectomy. Br J Surg 2006;93:844-53.
  • 88 Hammond JW, Queale WS, Kim TK, McFarland EG. Surgeon experience and clinical and economic outcomes for shoulder arthroplasty. J Bone Joint Surg Am 2003;85:2318-24.
  • 89 Duffau H. Higher-Order Surgical Questions for Diffuse Low-Grade Gliomas: Supramaximal Resection, Neuroplasticity, and Screening. Neurosurg Clin N Am 2019;30:119-28.
  • 90 Duffau H. Diffuse low-grade glioma, oncological outcome and quality of life: a surgical perspective. Curr Opin Oncol 2018;30:383-9.
  • 91 Duffau H. Mapping the connectome in awake surgery for gliomas: an update. J Neurosurg Sci 2017;61:612-60.
  • 92 de Leeuw CN, Vogelbaum MA. Supratotal resection in glioma: a systematic review. Neuro Oncol 2019;21:179-88.
  • 93 Dimou J, Beland B, Kelly J. Supramaximal resection: A systematic review of its safety, efficacy and feasibility in glioblastoma. J Clin Neurosci 2019. p. S0967-5868.
  • 94 D'Souza S, Ormond DR, Costabile J, Thompson JA. Fiber-tract localized diffusion coefficients highlight patterns of white matter disruption induced by proximity to glioma. PLoS One 2019;14:e0225323.
  • 95 Duffau H. Is non-awake surgery for supratentorial adult low-grade glioma treatment still feasible? Neurosurg Rev 2018;4:133-9.