CC BY-NC-ND 4.0 · Asian J Neurosurg 2019; 14(03): 710-714
DOI: 10.4103/ajns.AJNS_294_17
Original Article

Comparison between 1 g and 2 g of intrawound vancomycin powder application for prophylaxis in posterior instrumented thoracic or lumbosacral spine surgery: A preliminary report

Sombat Kunakornsawat
Spine Unit, Institute of Orthopaedics, Lerdsin Hospital, Bangkok
,
Sirichai Sirikajohnirun
Spine Unit, Institute of Orthopaedics, Lerdsin Hospital, Bangkok
,
Chaiwat Piyaskulkaew
Spine Unit, Institute of Orthopaedics, Lerdsin Hospital, Bangkok
,
Pritsanai Pruttikul
Spine Unit, Institute of Orthopaedics, Lerdsin Hospital, Bangkok
,
Piyabuth Kittithamvongs
Spine Unit, Institute of Orthopaedics, Lerdsin Hospital, Bangkok
,
Warongporn Pongpinyopap
Spine Unit, Institute of Orthopaedics, Lerdsin Hospital, Bangkok
,
Tinnakorn Pluemvitayaporn
Spine Unit, Institute of Orthopaedics, Lerdsin Hospital, Bangkok
› Author Affiliations

Background: Surgical site infection (SSI) after instrumented spinal surgery is one of the most serious complications in spite of the routine use of prophylactic intravenous (IV) antibiotics. Many studies have suggested that intrawound vancomycin powder, applied during the intraoperative period, may decrease the incidence of SSI after surgery. However, the appropriate dose of vancomycin has not yet been reported. Purpose: The purpose of the study is to compare between the use of 1 g and 2 g intrawound vancomycin powder and to find out which of these two groups can reduce the rate of deep wound infection in posterior instrumented thoracic or lumbosacral spine surgery. Materials and Methods: The preliminary study was conducted from July 2013 to July 2015 at Lerdsin Hospital. A total of 400 patients were enrolled in the study, and their individual demographics were recorded. All patients underwent posterior instrumented thoracic or lumbosacral spine surgery. Of these, 131 patients received IV cefazolin and 2 g of vancomycin powder intrawound application, 134 patients received 1 g of intrawound vancomycin powder in addition to IV cefazolin, and 135 patients were given only IV cefazolin and were assigned as the control group. Results: One hundred and thirty-one patients were treated with posterior instrumented thoracic or lumbosacral fusions using IV cefazolin and adjuvant 2 g of intrawound vancomycin powder. Five patients in this group developed deep infections (3.8%). One hundred and thirty-four patients were treated with posterior instrumented thoracic or lumbosacral fusions using IV cefazolin and adjuvant 1 g of intrawound vancomycin powder. Of these, four patients developed deep infections (2.98%). One hundred and thirty-five patients in the control group were treated with posterior instrumented thoracic or lumbosacral using only IV cefazolin as prophylaxis. Of these, four patients developed deep infections (2.96%). Coagulase-negative staphylococcus was the most common isolated organism. There were no adverse clinical outcomes or wound complications due to local application of vancomycin powder. Conclusion: The preliminary result could not state the relation of intrawound vancomycin powder to the deep infection; further study with adequate sample size is required.

Financial support and sponsorship

Nil.




Publication History

Article published online:
09 September 2022

© 2019. Asian Congress of Neurological Surgeons. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Calderone RR, Garland DE, Capen DA, Oster H. Cost of medical care for postoperative spinal infections. Orthop Clin North Am 1996;27:171-82.
  • 2 Wimmer C, Gluch H, Franzreb M, Ogon M. Predisposing factors for infection in spine surgery: A survey of 850 spinal procedures. J Spinal Disord 1998;11:124-8.
  • 3 Milstone AM, Maragakis LL, Townsend T, Speck K, Sponseller P, Song X, et al. Timing of preoperative antibiotic prophylaxis: A modifiable risk factor for deep surgical site infections after pediatric spinal fusion. Pediatr Infect Dis J 2008;27:704-8.
  • 4 Sweet FA, Roh M, Sliva C. Intrawound application of vancomycin for prophylaxis in instrumented thoracolumbar fusions: Efficacy, drug levels, and patient outcomes. Spine (Phila Pa 1976) 2011;36:2084-8.
  • 5 Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for prevention of surgical site infection, 1999. Hospital infection control practices advisory committee. Infect Control Hosp Epidemiol 1999;20:250-78.
  • 6 Chahoud J, Kanafani Z, Kanj SS. Surgical site infections following spine surgery: Eliminating the controversies in the diagnosis. Front Med (Lausanne) 2014;1:7.
  • 7 Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 2007;298:1763-71.
  • 8 Buchholz HW, Engelbrecht H. Depot effects of various antibiotics mixed with palacos resins. Chirurg 1970;41:511-5.
  • 9 Ostermann PA, Seligson D, Henry SL. Local antibiotic therapy for severe open fractures. A review of 1085 consecutive cases. J Bone Joint Surg Br 1995;77:93-7.
  • 10 Moehring HD, Gravel C, Chapman MW, Olson SA. Comparison of antibiotic beads and intravenous antibiotics in open fractures. Clin Orthop Relat Res 2000;(372):254-61.
  • 11 Gitelis S, Brebach GT. The treatment of chronic osteomyelitis with a biodegradable antibiotic-impregnated implant. J Orthop Surg (Hong Kong) 2002;10:53-60.
  • 12 Klemm KW. Antibiotic bead chains. Clin Orthop Relat Res 1993;(295):63-76.
  • 13 Picknell B, Mizen L, Sutherland R. Antibacterial activity of antibiotics in acrylic bone cement. J Bone Joint Surg Br 1977;59:302-7.
  • 14 Hanssen AD, Osmon DR, Patel R. Local antibiotic delivery systems: Where are we and where are we going? Clin Orthop Relat Res 2005;(437):111-4.
  • 15 Molinari RW, Khera OA, Molinari WJ 3rd. Prophylactic intraoperative powdered vancomycin and postoperative deep spinal wound infection: 1,512 consecutive surgical cases over a 6-year period. Eur Spine J 2012;21 Suppl 4:S476-82.
  • 16 O'Neill KR, Smith JG, Abtahi AM, Archer KR, Spengler DM, McGirt MJ, et al. Reduced surgical site infections in patients undergoing posterior spinal stabilization of traumatic injuries using vancomycin powder. Spine J 2011;11:641-6.