CC BY-NC-ND 4.0 · Asian J Neurosurg 2019; 14(04): 1126-1133
DOI: 10.4103/ajns.AJNS_242_19
Original Article

Value of brain computed tomographic angiography to predict post thrombectomy final infarct size and clinical outcome in acute ischemic stroke

Mungkorn Apirakkan
0   Division of Interventional Neuroradiology, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University, Bangkok
,
Withawat Vuthiwong
0   Division of Interventional Neuroradiology, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University, Bangkok
,
Chai Kobkitsuksakul
0   Division of Interventional Neuroradiology, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University, Bangkok
,
Jesada Keandoungchun
1   Division of Neurology, Department of Internal Medicine, Ramathibodi Hospital, Mahidol University, Bangkok
,
Ekachat Chanthanaphak
0   Division of Interventional Neuroradiology, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University, Bangkok
› Author Affiliations

Aims: This study aims to analyze the predictor in preoperative brain computed tomographic angiography (CTA) for final infarct and outcome in postendovascular thrombectomy patient. Subjects and Methods: 52 patients were retrospectively reviewed. The Alberta Stroke Program Early Computed Tomography Score (ASPECTS) comparison between preoperative noncontrast computed tomography (NCCT) and 24-h NCCT as well as preoperative CTA source image (CTA-SI) and 24-h NCCT were performed. Factors associated with increased ASPECTS and clinical outcome were evaluated. Results: Preoperative NCCT ASPECTS = 24-h NCCT in 23%. Whereas, 46% showed preoperative CTA-SI ASPECTS = 24-h NCCT. Moreover, 40.4% showed 24-h NCCT ASPECTS > preoperative CTA-SI (increased ASPECTS). The two significant factors associated with increased ASPECTS are thrombolysis in cerebral infarct score 2b/3 (P = 0.02) and good collateral status (P = 0.02). Finally, good clinical outcome was associated with age <60 (P = 0.04), preoperative CTA-SI ASPECTS >5 (P = 0.01), good collaterals status (P = 0.02), and increased ASPECTS (P = 0.05). Conclusions: Preoperative brain CTA provided the necessary factors that are associated with good clinical outcomes, which are CTA-SI ASPECTS > 5, good collateral status, and increased ASPECTS.

Financial support and sponsorship

Nil.




Publication History

Article published online:
09 September 2022

© 2019. Asian Congress of Neurological Surgeons. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Parsons MW, Pepper EM, Chan V, Siddique S, Rajaratnam S, Bateman GA, et al. Perfusion computed tomography: Prediction of final infarct extent and stroke outcome. Ann Neurol 2005;58:672-9.
  • 2 Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. 2018 guidelines for the early management of patients with acute ischemic stroke: A Guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2018;49:e46-e110.
  • 3 Powers WJ, Derdeyn CP, Biller J, Coffey CS, Hoh BL, Jauch EC, et al. 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: A Guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2015;46:3020-35.
  • 4 Mortimer AM, Simpson E, Bradley MD, Renowden SA. Computed tomography angiography in hyperacute ischemic stroke: Prognostic implications and role in decision-making. Stroke 2013;44:1480-8.
  • 5 Tan IY, Demchuk AM, Hopyan J, Zhang L, Gladstone D, Wong K, et al. CT angiography clot burden score and collateral score: Correlation with clinical and radiologic outcomes in acute middle cerebral artery infarct. AJNR Am J Neuroradiol 2009;30:525-31.
  • 6 Miteff F, Levi CR, Bateman GA, Spratt N, McElduff P, Parsons MW. The independent predictive utility of computed tomography angiographic collateral status in acute ischaemic stroke. Brain 2009;132:2231-8.
  • 7 Rosenthal ES, Schwamm LH, Roccatagliata L, Coutts SB, Demchuk AM, Schaefer PW, et al. Role of recanalization in acute stroke outcome: Rationale for a CT angiogram-based “benefit of recanalization” model. AJNR Am J Neuroradiol 2008;29:1471-5.
  • 8 Souza LC, Yoo AJ, Chaudhry ZA, Payabvash S, Kemmling A, Schaefer PW, et al. Malignant CTA collateral profile is highly specific for large admission DWI infarct core and poor outcome in acute stroke. AJNR Am J Neuroradiol 2012;33:1331-6.
  • 9 Lima FO, Furie KL, Silva GS, Lev MH, Camargo EC, Singhal AB, et al. The pattern of leptomeningeal collaterals on CT angiography is a strong predictor of long-term functional outcome in stroke patients with large vessel intracranial occlusion. Stroke 2010;41:2316-22.
  • 10 Menon BK, Smith EE, Modi J, Patel SK, Bhatia R, Watson TW, et al. Regional leptomeningeal score on CT angiography predicts clinical and imaging outcomes in patients with acute anterior circulation occlusions. AJNR Am J Neuroradiol 2011;32:1640-5.
  • 11 Schramm P, Schellinger PD, Fiebach JB, Heiland S, Jansen O, Knauth M, et al. Comparison of CT and CT angiography source images with diffusion-weighted imaging in patients with acute stroke within 6 hours after onset. Stroke 2002;33:2426-32.
  • 12 García-Tornel A, Carvalho V, Boned S, Flores A, Rodríguez-Luna D, Pagola J, et al. Improving the evaluation of collateral circulation by multiphase computed tomography angiography in acute stroke patients treated with endovascular reperfusion therapies. Interv Neurol 2016;5:209-17.
  • 13 Coutts SB, Lev MH, Eliasziw M, Roccatagliata L, Hill MD, Schwamm LH, et al. ASPECTS on CTA source images versus unenhanced CT: Added value in predicting final infarct extent and clinical outcome. Stroke 2004;35:2472-6.
  • 14 Bhatia R, Bal SS, Shobha N, Menon BK, Tymchuk S, Puetz V, et al. CT angiographic source images predict outcome and final infarct volume better than noncontrast CT in proximal vascular occlusions. Stroke 2011;42:1575-80.
  • 15 Sallustio F, Motta C, Pizzuto S, Diomedi M, Rizzato B, Panella M, et al. CT angiography ASPECTS predicts outcome much better than noncontrast CT in patients with stroke treated endovascularly. AJNR Am J Neuroradiol 2017;38:1569-73.
  • 16 Wasser K, Papanagiotou P, Brunner F, Hildebrandt H, Winterhalter M, Roth C, et al. Impact of ASPECTS on computed tomography angiography source images on outcome after thrombolysis or endovascular therapy in large vessel occlusions. Eur J Neurol 2016;23:1599-605.
  • 17 Kawiorski MM, Martínez-Sánchez P, García-Pastor A, Calleja P, Fuentes B, Sanz-Cuesta BE, et al. Alberta stroke program early CT score applied to CT angiography source images is a strong predictor of futile recanalization in acute ischemic stroke. Neuroradiology 2016;58:487-93.
  • 18 Sharma M, Fox AJ, Symons S, Jairath A, Aviv RI. CT angiographic source images: Flow – Or volume-weighted? AJNR Am J Neuroradiol 2011;32:359-64.
  • 19 Mukherjee A, Muthusami P, Mohimen A, Srinivasan K, Babunath B, Sylaja PN, et al. Noncontrast computed tomography versus computed tomography angiography source images for predicting final infarct size in anterior circulation acute ischemic stroke: A prospective cohort study. J Stroke Cerebrovasc Dis 2017;26:339-46.
  • 20 Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 2016;387:1723-31.
  • 21 Fujita K, Tanaka K, Yamagami H, Ide T, Ishiyama H, Sonoda K, et al. Detrimental effect of chronic hypertension on leptomeningeal collateral flow in acute ischemic stroke. Stroke 2019;50:1751-7.
  • 22 Menon BK, Smith EE, Coutts SB, Welsh DG, Faber JE, Goyal M, et al. Leptomeningeal collaterals are associated with modifiable metabolic risk factors. Ann Neurol 2013;74:241-8.
  • 23 Marks MP, Lansberg MG, Mlynash M, Kemp S, McTaggart RA, Zaharchuk G, et al. Angiographic outcome of endovascular stroke therapy correlated with MR findings, infarct growth, and clinical outcome in the DEFUSE 2 trial. Int J Stroke 2014;9:860-5.
  • 24 Khatri P, Yeatts SD, Mazighi M, Broderick JP, Liebeskind DS, Demchuk AM, et al. Time to angiographic reperfusion and clinical outcome after acute ischaemic stroke: An analysis of data from the interventional management of stroke (IMS III) phase 3 trial. Lancet Neurol 2014;13:567-74.
  • 25 Khatri P, Abruzzo T, Yeatts SD, Nichols C, Broderick JP, Tomsick TA, et al. Good clinical outcome after ischemic stroke with successful revascularization is time-dependent. Neurology 2009;73:1066-72.
  • 26 Nogueira RG, Smith WS, Sung G, Duckwiler G, Walker G, Roberts R, et al. Effect of time to reperfusion on clinical outcome of anterior circulation strokes treated with thrombectomy: Pooled analysis of the MERCI and multi MERCI trials. Stroke 2011;42:3144-9.
  • 27 Goldstein ED, Schnusenberg L, Mooney L, Raper CC, McDaniel S, Thorpe DA, et al. Reducing door-to-reperfusion time for mechanical thrombectomy with a multitiered notification system for acute ischemic stroke. Mayo Clin Proc Innov Qual Outcomes 2018;2:119-28.
  • 28 Sussman ES, Connolly ES Jr. Hemorrhagic transformation: A review of the rate of hemorrhage in the major clinical trials of acute ischemic stroke. Front Neurol 2013;4:69.