CC BY-NC-ND 4.0 · Asian J Neurosurg 2020; 15(01): 88-93
DOI: 10.4103/ajns.AJNS_221_19
Original Article

Sodium fluorescein in brain tumor surgery: Assessing relative fluorescence intensity at tumor margins

Ragavan Manoharan
Department of Neurosurgery, Royal North Shore Hospital, Sydney
,
Jonathon Parkinson
Department of Neurosurgery, Royal North Shore Hospital, Sydney
› Author Affiliations

Purpose: The use of intraoperative 5-aminolevulinic acid fluorescence has been shown to increase the extent of resection in high-grade glioma surgery. Sodium fluorescein is an alternate fluorescence agent with advantages of low cost, low adverse effect profile, and ability to visualize anatomical detail under the fluorescence filter. Sodium fluorescein-based fluorescence is not specific to tumor cells, and the significance of residual fluorescence at tumor margins has been questioned. In this article, the authors sought to correlate fluorescence intensity at tumor margins with the presence of residual contrast-enhancing tumor on magnetic resonance imaging (MRI). Methods: Eleven patients with a total of 12 lesions were enrolled in the study. Sodium fluorescein was administered at a dose of 5 mg/kg on induction of anesthesia. Relative intensity of fluorescence was extrapolated from intraoperative photographs through isolation of the green channel from the red/green/blue image, then graphically representing of pixel intensity through application of a thermal map. The correlation between areas of avid fluorescence at tumor cavity margins and the presence of residual contrast-enhancing tumor on postoperative MRI was evaluated. Results: All tumors demonstrated fluorescence. The presence of avid fluorescence at tumor cavity margins had a sensitivity of 66.7% and specificity of 75% for the presence of residual contrast-enhancing tumor on postoperative MRI. There were no adverse effects of fluorescein administration. Conclusion: Quantification of relative fluorescence intensity allows easy identification of areas that are high risk for residual contrast-enhancing tumor. Graphical representation of green pixel intensity requires validation through histopathological analysis but has the potential for real-time clinical application.

Financial support and sponsorship

This study was financially supported by the Department of Neurosurgery, Royal North Shore Hospital.




Publication History

Received: 14 July 2019

Accepted: 23 December 2019

Article published online:
16 August 2022

© 2020. Asian Congress of Neurological Surgeons. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Hervey-Jumper SL, Berger MS. Maximizing safe resection of low- and high-grade glioma. J Neurooncol 2016;130:269-82.
  • 2 Wirtz CR, Albert FK, Schwaderer M, Heuer C, Staubert A, Tronnier VM, et al. The benefit of neuronavigation for neurosurgery analyzed by its impact on glioblastoma surgery. Neurol Res 2000;22:354-60.
  • 3 Acerbi F, Broggi M, Schebesch KM, Höhne J, Cavallo C, De Laurentis C, et al. Fluorescein-Guided surgery for resection of high-grade gliomas: A multicentric prospective phase II study (FLUOGLIO). Clin Cancer Res 2018;24:52-61.
  • 4 Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ, et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: A randomised controlled multicentre phase III trial. Lancet Oncol 2006;7:392-401.
  • 5 Diaz RJ, Dios RR, Hattab EM, Burrell K, Rakopoulos P, Sabha N, et al. Study of the biodistribution of fluorescein in glioma-infiltrated mouse brain and histopathological correlation of intraoperative findings in high-grade gliomas resected under fluorescein fluorescence guidance. J Neurosurg 2015;122:1360-9.
  • 6 Xiang Y, Zhu XP, Zhao JN, Huang GH, Tang JH, Chen HR, et al. Blood-brain barrier disruption, sodium fluorescein, and fluorescence-guided surgery of gliomas. Br J Neurosurg 2018;32:141-8.
  • 7 Stummer W. Poor man's fluorescence? Acta Neurochir (Wien) 2015;157:1379-81.
  • 8 Stummer W. Fluorescein in brain metastasis and glioma surgery. Acta Neurochir (Wien) 2015;157:2199-200.
  • 9 Neira JA, Ung TH, Sims JS, Malone HR, Chow DS, Samanamud JL, et al. Aggressive resection at the infiltrative margins of glioblastoma facilitated by intraoperative fluorescein guidance. J Neurosurg 2017;127:111-22.
  • 10 Rey-Dios R, Hattab EM, Cohen-Gadol AA. Use of intraoperative fluorescein sodium fluorescence to improve the accuracy of tissue diagnosis during stereotactic needle biopsy of high-grade gliomas. Acta Neurochir (Wien) 2014;156:1071-5.
  • 11 Catapano G, Sgulò FG, Seneca V, Lepore G, Columbano L, di Nuzzo G. Fluorescein-guided surgery for high-grade glioma resection: An intraoperative “contrast-enhancer”. World Neurosurg 2017;104:239-47.
  • 12 Zhang N, Tian H, Huang D, Meng X, Guo W, Wang C, et al. Sodium fluorescein-guided resection under the YELLOW 560 nm surgical microscope filter in malignant gliomas: Our first 38 cases experience. Biomed Res Int 2017;2017:1-10.
  • 13 Cavallo C, De Laurentis C, Vetrano IG, Falco J, Broggi M, Schiariti M, et al. The utilization of fluorescein in brain tumor surgery: A systematic review. J Neurosurg Sci 2018;62:690-703.
  • 14 Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: An open-source platform for biological-image analysis. Nat Methods 2012;9:676-82.
  • 15 Murray KJ. Improved surgical resection of human brain tumors: Part I. A preliminary study. Surg Neurol 1982;17:316-9.
  • 16 Höhne J, Hohenberger C, Proescholdt M, Riemenschneider MJ, Wendl C, Brawanski A, et al. Fluorescein sodium-guided resection of cerebral metastases-an update. Acta Neurochir (Wien) 2017;159:363-7.