Subscribe to RSS

DOI: 10.4103/LIUJ.LIUJ_29_20
Doxycycline: An antibiotic with brain protective function in vanadium-intoxicated rats

Abstract
Background: Exposure to vanadium exhibits deleterious neurotoxicity. Doxycycline is a potential antioxidant that prevents the progression of disease through inhibition of lipid peroxidation. Objectives: This research investigates the neuroprotective effects of doxycycline, in different rat brain areas in an animal model intoxicated with vanadium. Materials and Methods: Male Sprague-Dawley rats were equally divided into the following four groups: control group, doxycycline-treated group, vanadium-treated group, and concomitant doses of doxycycline plus vanadium-treated group, all given orally for 10 consecutive days. The animals were watched daily for any signs of neurological defects. They were sacrificed by decapitation 24 h after the last dose. Brain was removed rapidly and dissected into cerebral cortex, cerebellum, and brain stem. Biochemical studies including the concentrations of phospholipids, cholesterol, cerebrosides, glutathione (GSH), acetylcholinesterase (AChE) activity, gangliosides, ascorbic acid, calcium, and lipid peroxidation levels were determined. Results: The results revealed that vanadium produced significant reduction in body and absolute brain weight, with neurological function deficits. Vanadium significantly decreased the concentrations of phospholipids, cholesterol, cerebrosides, and GSH and inhibited AChE activity together with significant increase in gangliosides, ascorbic acid, calcium, and lipid peroxidation levels compared to saline controls. Animals which were given the combined treatment of vanadium and doxycycline regained weight and became normal. Moreover, doxycycline reversed the effect of vanadium on the metabolic variables and inhibited lipid peroxidation nearing to normal levels to that of saline controls. Conclusion: These findings demonstrated the antioxidant or chelating action of doxycycline against vanadium neurotoxicity and its therapeutic potential to avert neurodegenerative changes in different rat brain areas.
Key-words:
Doxycycline - lipid peroxidation - neuronal deficits - neurotoxicity - reactive oxygen species - vanadiumFinancial support and sponsorship
Nil.
Publication History
Received: 05 July 2020
Accepted: 24 July 2020
Article published online:
14 June 2022
© 2020. Libyan International Medical University. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 Pessoa JC, Etcheverry S, Gambino D. Vanadium compounds in medicine. Coord Chem Rev 2015;301:24-48.
- 2 WHO Task Group on Environmental Health Criteria for Vanadium. 1988. Available from: https://apps.who.int/iris/handle/10665/39304/2012-06-16T14:03:58Z. 9241542810. [Last accessed on 2019 Aug 14].
- 3 Folarin OR, Snyder AM, Peters DG, Olopade F, Connor JR, Olopade JO. Brain metal distribution and neuro-inflammatory profiles after chronic vanadium administration and withdrawal in mice. Front Neuroanat 2017;11:58.
- 4 Cuesta S, Francés D, García GB. ROS formation and antioxidant status in brain areas of rats exposed to sodium metavanadate. Neurotoxicol Teratol 2011;33:297-302.
- 5 Sasi MM, Haider SS, El-Fakhri M, Ghwarsha KM. Microchromatographic analysis of lipids, protein, and occurrence of lipid peroxidation in various brain areas of vanadium exposed rats: A possible mechanism of vanadium neurotoxicity. Neurotoxicology 1994;15:413-20.
- 6 Yulug B, Hanoglu L, Kilic E, Schabitz WR. Rifampicin: An antibiotic with brain protective function. Brain Res Bull 2014;107:37-42.
- 7 Clemens DL, Duryee MJ, Sarmiento C, Chiou A, McGowan JD, Hunter CD, et al. Novel antioxidant properties of doxycycline. Int J Mol Sci 2018;19:3-13.
- 8 Yaǧan A, Kesim S, Liman N. Effect of low-dose doxycycline on serum oxidative status, gingival antioxidant levels, and alveolar bone loss in experimental periodontitis in rats. J Periodontol 2014;85:478-89.
- 9 Haider SS, Abdel-Gayoum AA, El-Fakhri M, Ghwarsha KM. Effect of selenium on vanadium toxicity in different regions of rat brain. Hum Exp Toxicol 1998;17:23-8.
- 10 Adebiyi OE, Olopade JO, Olayemi FO. Neuroprotective effect of grewia carpinifolia extract against vanadium induced behavioral impairment. Folia Vet 2016;60, 40:5-13.
- 11 Folch J, Ascoli I, Lees M, Meath JA, Lebaron N. Preparation of lipide extracts from brain tissue. J Biol Chem 1951;191:833-41.
- 12 Marinetti GV. Chromatographic separation, identification and analysis of phosphatides. J Lipid Res 1952;3:1-12.
- 13 Bloor WR, Pelkan KF, Allen DM. Determination of fatty acids and cholesterol in small amount of blood plasma. J Biol Chem 1922;52:191-205.
- 14 Roughan PG, Batt RD. Quantitative analysis of sulfolipid (sulfoquinovosyl diglyceride) and galactolipids (monogalactosyl and digalactosyl diglycerides) in plant tissues. Anal Biochem 1968;22:74-88.
- 15 Pollet S, Ermidou S, Le Saux F, Monge M, Baumann N. Microanalysis of brain lipids: Multiple two-dimensional thin-layer chromatography. J Lipid Res 1978;19:916-21.
- 16 Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95:351-8.
- 17 Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Anal Biochem 1968;25:192-205.
- 18 Kyaw A. A simple colorimetric method for ascorbic acid determination in blood plasma. Clin Chim Acta 1978;86:153-7.
- 19 Gindler EM, King DJ. Calcium measurement. Am J Clin Pathol 1972;58:376-9.
- 20 Ellman GL, Weber M, Jean A. The assay of acetylcholinesterase. Biochem Pharmacol 1961;7:88-9.
- 21 Kirkwood BR. Essentials of Medical Statistics. Oxford, UK: Blackwell Scientific Publications; 1989. p. 47-50.
- 22 Haider SS, El-Fakhri M. Action of alpha-tocopherol on vanadium-stimulated lipid peroxidation in rat brain. Neurotoxicology 1991;12:79-85.
- 23 Olopade JO, Connor JR. Vanadium and neurotoxicity: A review. Curr Top Toxicol 2011;7:33-89.
- 24 El-Shaari FA, Haider SS, El-Fakhri MM, Ghawarsha KM. Does ascorbic acid protect against vanadium neurotoxicity in different regions of rat brain? Neurosciences (Riyadh) 2002;7:278-86.
- 25 Fatola OI, Olaolorun FA, Olopade FE, Olopade JO. Trends in vanadium neurotoxicity. Brain Res Bull 2019;145:75-80.
- 26 Aschner M, Levin ED, Suñol C, Olopade JO, Helmcke KJ, Avila DS, et al. Gene-environment interactions: Neurodegeneration in non-mammals and mammals. Neurotoxicology 2010;31:582-8.
- 27 Mustapha O, Oke B, Offen N, Sirén AL, Olopade J. Neurobehavioral and cytotoxic effects of vanadium during oligodendrocyte maturation: A protective role for erythropoietin. Environ Toxicol Pharmacol 2014;38:98-111.
- 28 Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D. Vanadium compounds as pro-inflammatory agents: Effects on cyclooxygenases. Int J Mol Sci 2015;16:12648-68.
- 29 Wang X, Michaelis EK. Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci 2010;2:12.
- 30 Nogueira CR, Damasceno FM, de Aquino-Neto MR, de Andrade GM, Fontenele JB, de Medeiros TA, et al. Doxycycline protects against pilocarpine-induced convulsions in rats, through its antioxidant effect and modulation of brain amino acids. Pharmacol Biochem Behav 2011;98:525-32.
- 31 Sies H. Glutathione and its role in cellular functions. Free Radic Biol Med 1999;27:916-21.
- 32 Haider SS, Kashyap SK. Vanadium intoxication inhibits sulfhydryl groups and glutathione in the rat brain. Ind Health 1989;27:23-5.
- 33 Niki E, Noguchi N, Tsuchihashi H, Gotoh N. Interaction among vitamin C, vitamin E, and β-carotene. Am J Clin Nutr 1995;62(Supp):1322S-1326S.
- 34 Harrison FE, May JM. Vitamin C function in the brain: Vital role of the ascorbate transporter SVCT2. Free Radic Biol Med 2009;46:719-30.
- 35 Ott P. Membrane acetylcholinesterases: Purification, molecular properties and interactions with amphiphilic environments. Biochim Biophys Acta 1985;822:375-92.
- 36 Braughler JM, Duncan LA, Chase RL. Interaction of lipid peroxidation and calcium in the pathogenesis of neuronal injury. Cent Nerv Syst Trauma 1985;2:269-83.