J Neuroanaesth Crit Care 2015; 02(03): 232-239
DOI: 10.4103/2348-0548.165049
Review Article
Thieme Medical and Scientific Publishers Private Ltd.

Cerebral microdialysis

Charu Mahajan
1   Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
,
Girija P Rath
1   Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
› Author Affiliations

Subject Editor:
Further Information

Publication History

Publication Date:
02 May 2018 (online)

Abstract

Cerebral microdialysis is one of the latest neuromonitoring modalities introduced to clinical practice. It is a bedside monitor used to assess brain tissue biochemistry. The principle of this technique is closely related to brain metabolism and dialysis. Microdialysis helps monitoring different metabolites related to energy and metabolic cascades (glucose, lactate and pyruvate), amino acids (glutamate) and markers of cell membrane degradation (glycerol). Its role has been established in conditions such as traumatic brain injury, subarachnoid haemorrhage, ischaemic stroke, etc. However, it is yet to be included in routine neuromonitoring as the technique is very expensive, needs technical expertise and the measurement is not continuous with a lag period in-between two readings. Till date, it is mostly used as a research tool, even though it is a very promising technique in certain clinical conditions.

 
  • REFERENCES

  • 1 Delgado JM, DeFeudis FV, Roth RH, Ryugo DK, Mitruka BM. Dialytrode for long term intracerebral perfusion in awake monkeys. Arch Int Pharmacodyn Ther 1972; 198: 9-21
  • 2 Ungerstedt U, Pycock C. Functional correlates of dopamine neurotransmission. Bull Schweiz Akad Med Wiss 1974; 30: 44-55
  • 3 Meyerson BA, Linderoth B, Karlsson H, Ungerstedt U. Microdialysis in the human brain: Extracellular measurements in the thalamus of parkinsonian patients. Life Sci 1990; 46: 301-8
  • 4 Bergsneider M, Hovda DA, Shalmon E, Kelly DF, Vespa PM, Martin NA. et al. Cerebral hyperglycolysis following severe traumatic brain injury in humans: A positron emission tomography study. J Neurosurg 1997; 86: 241-51
  • 5 Schurr A, Payne RS, Miller JJ, Rigor BM. Brain lactate, not glucose, fuels the recovery of synaptic function from hypoxia upon reoxygenation: An in vitro study. Brain Res 1997; 744: 105-11
  • 6 Smith D, Pernet A, Hallett WA, Bingham E, Marsden PK, Amiel SA. Lactate: A preferred fuel for human brain metabolism in vivo . J Cereb Blood Flow Metab 2003; 23: 658-64
  • 7 Rinholm JE, Hamilton NB, Kessaris N, Richardson WD, Bergersen LH, Attwell D. Regulation of oligodendrocyte development and myelination by glucose and lactate. J Neurosci 2011; 31: 538-48
  • 8 Glenn TC, Kelly DF, Boscardin WJ, McArthur DL, Vespa P, Oertel M. et al. Energy dysfunction as a predictor of outcome after moderate or severe head injury: Indices of oxygen, glucose, and lactate metabolism. J Cereb Blood Flow Metab 2003; 23: 1239-50
  • 9 Berthet C, Lei H, Thevenet J, Gruetter R, Magistretti PJ, Hirt L. Neuroprotective role of lactate after cerebral ischemia. J Cereb Blood Flow Metab 2009; 29: 1780-9
  • 10 Berthet C, Castillo X, Magistretti PJ, Gruetter R, Magistretti PJ, Hirt L. New evidence of neuroprotection by lactate after transient focal cerebral ischemia: Extended benefit after intracerebroventricular injection and efficacy of intravenous administration. Cerebrovasc Dis 2012; 34: 329-35
  • 11 Reinstrup P, Ståhl N, Mellergård P, Uski T, Ungerstedt U, Nordström CH. Intracerebral microdialysis in clinical practice: Baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery 2000; 47: 701-9
  • 12 Tisdall MM, Smith M. Cerebral microdialysis: Research technique or clinical tool. Br J Anaesth 2006; 97: 18-25
  • 13 Ungerstedt U, Rostami E. Microdialysis in neurointensive care. Curr Pharm Des 2004; 10: 2145-52
  • 14 Hillered L, Persson L, Nilsson P, Ronne-Engstrom E, Enblad P. Continuous monitoring of cerebral metabolism in traumatic brain injury: A focus on cerebral microdialysis. Curr Opin Crit Care 2006; 12: 112-8
  • 15 Berger C, Sakowitz OW, Kiening KL, Schwab S. Neurochemical monitoring of glycerol therapy in patients with ischemic brain edema. Stroke 2005; 36: e4-6
  • 16 Bellander BM, Cantais E, Enblad P, Hutchinson P, Nordström CH, Robertson C. et al. Consensus meeting on microdialysis in neurointensive care. Intensive Care Med 2004; 30: 2166-9
  • 17 Vespa P, Bergsneider M, Hattori N, Wu HM, Huang SC, Martin NA. et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: A combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab 2005; 25: 763-74
  • 18 Carpenter KL, Jalloh I, Gallagher CN, Grice P, Howe DJ, Mason A. et al. (13) C-labelled microdialysis studies of cerebral metabolism in TBI patients. Eur J Pharm Sci 2014; 57: 87-97
  • 19 Jalloh I, Carpenter KL, Grice P, Howe DJ, Mason A, Gallagher CN. et al. Glycolysis and the pentose phosphate pathway after human traumatic brain injury: Microdialysis studies using 1, 2-(13) C2 glucose. J Cereb Blood Flow Metab 2015; 35: 111-20
  • 20 Timofeev I, Czosnyka M, Carpenter KL, Nortje J, Kirkpatrick PJ, Al-Rawi PG. et al. Interaction between brain chemistry and physiology after traumatic brain injury: Impact of autoregulation and microdialysis catheter location. J Neurotrauma 2011; 28: 849-60
  • 21 Timofeev I, Carpenter KL, Nortje J, Al-Rawi PG, O'Connell MT, Czosnyka M. et al. Cerebral extracellular chemistry and outcome following traumatic brain injury: A microdialysis study of 223 patients. Brain 2011; 134 (Pt 2) 484-94
  • 22 Sanchez JJ, Bidot CJ, O'Phelan K, Gajavelli S, Yokobori S, Olvey S. et al. Neuromonitoring with microdialysis in severe traumatic brain injury patients. Acta Neurochir Suppl 2013; 118: 223-7
  • 23 Sala N, Suys T, Zerlauth JB, Bouzat P, Messerer M, Bloch J. et al. Cerebral extracellular lactate increase is predominantly nonischemic in patients with severe traumatic brain injury. J Cereb Blood Flow Metab 2013; 33: 1815-22
  • 24 Sahuquillo J, Merino MA, Sánchez-Guerrero A, Arikan F, Vidal-Jorge M, Martínez-Valverde T. et al. Lactate and the lactate-to-pyruvate molar ratio cannot be used as independent biomarkers for monitoring brain energetic metabolism: A microdialysis study in patients with traumatic brain injuries. PLoS One 2014; 9: e102540
  • 25 Bullock R, Zauner A, Woodward JJ, Myseros J, Choi SC, Ward JD. et al. Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg 1998; 89: 507-18
  • 26 Rostami E. Glucose and the injured brain-monitored in the neurointensive care unit. Front Neurol 2014; 5: 91
  • 27 Oddo M, Schmidt JM, Carrera E, Badjatia N, Connolly ES, Presciutti M. et al. Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: A microdialysis study. Crit Care Med 2008; 36: 3233-8
  • 28 Marcoux J, McArthur DA, Miller C, Glenn TC, Villablanca P, Martin NA. et al. Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit Care Med 2008; 36: 2871-7
  • 29 Kett-White R, Hutchinson PJ, Al-Rawi PG, Czosnyka M, Gupta AK, Pickard JD. et al. Cerebral oxygen and microdialysis monitoring during aneurysm surgery: Effects of blood pressure, cerebrospinal fluid drainage, and temporary clipping on infarction. J Neurosurg 2002; 96: 1013-9
  • 30 Bhatia R, Hashemi P, Razzaq A, Parkin MC, Hopwood SE, Boutelle MG. et al. Application of rapid-sampling, online microdialysis to the monitoring of brain metabolism during aneurysm surgery. Neurosurgery. 2006 58. 4 Suppl 2: ONS-313-20.
  • 31 Unterberg AW, Sakowitz OW, Sarrafzadeh AS, Benndorf G, Lanksch WR. Role of bedside microdialysis in the diagnosis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg 2001; 94: 740-9
  • 32 Ulrich CT, Fung C, Vatter H, Setzer M, Gueresir E, Seifert V. et al. Occurrence of vasospasm and infarction in relation to a focal monitoring sensor in patients after SAH: Placing a bet when placing a probe?. PLoS One 2013; 8: e62754
  • 33 Sarrafzadeh AS, Sakowitz OW, Kiening KL, Benndorf G, Lanksch WR, Unterberg AW. Bedside microdialysis: A tool to monitor cerebral metabolism in subarachnoid hemorrhage patients?. Crit Care Med 2002; 30: 1062-70
  • 34 Skjøth-Rasmussen J, Schulz M, Kristensen SR, Bjerre P. Delayed neurological deficits detected by an ischemic pattern in the extracellular cerebral metabolites in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg 2004; 100: 8-15
  • 35 Sarrafzadeh A, Haux D, Küchler I, Lanksch WR, Unterberg AW. Poor-grade aneurysmal subarachnoid hemorrhage: Relationship of cerebral metabolism to outcome. J Neurosurg 2004; 100: 400-6
  • 36 Schmidt JM, Ko SB, Helbok R, Kurtz P, Stuart RM, Presciutti M. et al. Cerebral perfusion pressure thresholds for brain tissue hypoxia and metabolic crisis after poor-grade subarachnoid hemorrhage. Stroke 2011; 42: 1351-6
  • 37 Zetterling M, Hillered L, Enblad P, Karlsson T, Ronne-Engström E. Relation between brain interstitial and systemic glucose concentrations after subarachnoid hemorrhage. J Neurosurg 2011; 115: 66-74
  • 38 Schlenk F, Nagel A, Graetz D, Sarrafzadeh AS. Hyperglycemia and cerebral glucose in aneurysmal subarachnoid hemorrhage. Intensive Care Med 2008; 34: 1200-7
  • 39 Schlenk F, Graetz D, Nagel A, Schmidt M, Sarrafzadeh AS. Insulin-related decrease in cerebral glucose despite normoglycemia in aneurysmal subarachnoid hemorrhage. Crit Care 2008; 12: R9
  • 40 Antunes AP, Schiefecker AJ, Beer R, Pfausler B, Sohm F, Fischer M. et al. Higher brain extracellular potassium is associated with brain metabolic distress and poor outcome after aneurysmal subarachnoid hemorrhage. Crit Care 2014; 18: R119
  • 41 Helbok R, Schiefecker A, Delazer M, Beer R, Bodner T, Pfausler B. et al. Cerebral tau is elevated after aneurysmal subarachnoid haemorrhage and associated with brain metabolic distress and poor functional and cognitive long-term outcome. J Neurol Neurosurg Psychiatry 2015; 86: 79-86
  • 42 Kofler M, Schiefecker A, Ferger B, Beer R, Sohm F, Broessner G. et al. Cerebral taurine levels are associated with brain edema and delayed cerebral infarction in patients with aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2015. PMID: 25894453 [Ahead of print].
  • 43 Berger C, Annecke A, Aschoff A, Spranger M, Schwab S. Neurochemical monitoring of fatal middle cerebral artery infarction. Stroke 1999; 30: 460-3
  • 44 Berger C, Kiening K, Schwab S. Neurochemical monitoring of therapeutic effects in large human MCA infarction. Neurocrit Care 2008; 9: 352-6
  • 45 Berger C, Schäbitz WR, Georgiadis D, Steiner T, Aschoff A, Schwab S. Effects of hypothermia on excitatory amino acids and metabolism in stroke patients: A microdialysis study. Stroke 2002; 33: 519-24
  • 46 Roslin M, Henriksson R, Bergström P, Ungerstedt U, Bergenheim AT. Baseline levels of glucose metabolites, glutamate and glycerol in malignant glioma assessed by stereotactic microdialysis. J Neurooncol 2003; 61: 151-60
  • 47 Xu W, Mellergård P, Ungerstedt U, Nordström CH. Local changes in cerebral energy metabolism due to brain retraction during routine neurosurgical procedures. Acta Neurochir (Wien) 2002; 144: 679-83
  • 48 Blakeley J, Portnow J. Microdialysis for assessing intratumoral drug disposition in brain cancers: A tool for rational drug development. Expert Opin Drug Metab Toxicol 2010; 6: 1477-91
  • 49 Ronquist G, Hugosson R, Sjölander U, Ungerstedt U. Treatment of malignant glioma by a new therapeutic principle. Acta Neurochir (Wien) 1992; 114: 8-11
  • 50 Bergenheim AT, Roslin M, Ungerstedt U, Waldenström A, Henriksson R, Ronquist G. Metabolic manipulation of glioblastoma in vivo by retrograde microdialysis of L-2, 4 diaminobutyric acid (DAB). J Neurooncol 2006; 80: 285-93
  • 51 Ronne-Engström E, Hillered L, Flink R, Spännare B, Ungerstedt U, Carlson H. Intracerebral microdialysis of extracellular amino acids in the human epileptic focus. J Cereb Blood Flow Metab 1992; 12: 873-6
  • 52 Qureshi AI, Ali Z, Suri MF, Shuaib A, Baker G, Todd K. et al. Extracellular glutamate and other amino acids in experimental intracerebral hemorrhage: An in vivo microdialysis study. Crit Care Med 2003; 31: 1482-9
  • 53 Orakcioglu B, Kentar MM, Schiebel P, Uozumi Y, Unterberg A, Sakowitz OW. Perihemorrhagic ischemia occurs in a volume-dependent manner as assessed by multimodal cerebral monitoring in a porcine model of intracerebral hemorrhage. Neurocrit Care 2015; 22: 133-9
  • 54 Rivera-Espinosa L, Floriano-Sánchez E, Pedraza-Chaverrí J, Coballase-Urrutia E, Sampieri AI, Ortega-Cuellar D. et al. Contributions of microdialysis to new alternative therapeutics for hepatic encephalopathy. Int J Mol Sci 2013; 14: 16184-206