CC BY-NC-ND 4.0 · South Asian J Cancer 2013; 02(04): 187-192
DOI: 10.4103/2278-330X.119877
THE GREAT DEBATE: For HPV vaccine in cervical cancer

Efficacy and safety of human papillomavirus vaccine for primary prevention of cervical cancer: A review of evidence from phase III trials and national programs

Partha Basu
Department of Gynaecologic Oncology, Chittaranjan National Cancer Institute, Kolkata, West Bengal
,
Dipanwita Banerjee
Department of Gynaecologic Oncology, Chittaranjan National Cancer Institute, Kolkata, West Bengal
,
Priyanka Singh
Department of Gynaecologic Oncology, Chittaranjan National Cancer Institute, Kolkata, West Bengal
,
Chandrani Bhattacharya
Department of Gynaecologic Oncology, Chittaranjan National Cancer Institute, Kolkata, West Bengal
,
Jaydip Biswas
Department of Surgical Oncology, Chittaranjan National Cancer Institute, Kolkata, West Bengal
› Author Affiliations
Source of Support: Nill.

Abstract

The Human Papillomavirus (HPV) vaccines have been widely introduced in the national immunization programs in most of the medium and high income countries following endorsement from national and international advisory bodies. HPV vaccine is unique and its introduction is challenging in many ways – it is the first vaccine developed to prevent any cancer, the vaccine is gender specific, it targets adolescent females who are difficult to reach by any health intervention programs. It is not unusual for such a vaccine to face scepticism and reservations not only from lay public but also from professionals in spite of the clinical trial results convincingly and consistently proving their efficacy and safety. Over the last few years millions of doses of the HPV vaccine have been administered round the world and the efficacy and safety data have started coming from the real life programs. A comprehensive cervical cancer control program involving HPV vaccination of the adolescent girls and screening of the adult women has been proved to be the most cost‑effective approach to reduce the burden of cervical cancer. The present article discusses the justification of HPV vaccination in the backdrop of natural history of cervical cancer, the mechanism of action of the vaccines, efficacy and safety data from phase III randomized controlled trials as well as from the national immunization programs of various countries.



Publication History

Article published online:
31 December 2020

© 2013. MedIntel Services Pvt Ltd. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/.)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Bosch FX, Lorincz A, Muñoz N, Meijer N, Shah KV. The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 2002; 55;244-65.
  • 2 Available from: http://apps.who.int/hpvcentre/statistics/dynamic/ico/country_pdf/IND.pdf. Updated in September 2010. [Last accessed on 2013 May 13].
  • 3 Richardson H, Abrahamowicz M, Tellier PP, Kelsall G, du Berger R, Ferenczy A, et al. Modifiable risk factors associated with clearance of type-specific cervical human papillomavirus infections in a cohort of university students. Cancer Epidemiol Biomarkers Prev 2005;14:1149-56.
  • 4 Mantovani F, Banks L. The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene 2001;20 : 7874-87.
  • 5 Boyer SN, Wazer DE, Band V. E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Research 1996;56:4620-4.
  • 6 McCredie MR, Sharples KJ, Paul C, Baranyai J, Medley G, Jones RW, et al. Natural history of cervical neoplasia and risk of invasive cancer in women with cervical intraepithelial neoplasia 3: A retrospective cohort study. Lancet Oncol 2008;9:425-34.
  • 7 Muñoz N, Bosch FX, de Sanjosé S, Herrero R, Castellsagué X, Shah KV, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 2003;348:518-27.
  • 8 Muñoz N, Bosch FX, Castellsagué X, Díaz M, de Sanjose S, Hammouda D, et al. Against which human papillomavirus types shall we vaccinate and screen? The international perspective. Int J Cancer 2004;111:278-85.
  • 9 Basu P, Chandna P, Bamezai RN, Siddiqi M, Saranath D, Lear A, et al. MassARRAY spectrometry is more sensitive than PreTect HPV-Proofer and consensus PCR for type-specific detection of high-risk oncogenic human papillomavirus genotypes in cervical cancer. J Clin Microbiol 2011;49:3537-44.
  • 10 Stanley M. Immune responses to human papillomavirus. Vaccine 2006;24(Suppl 1):S16-22.
  • 11 Pagliusi SR, Aguado MT. Efficacy and other milestones for human papillomavirus vaccine introduction. Vaccine 2004;23:569-78.
  • 12 Lu B, Kumar A, Castellsagué X, Giuliano AR. Efficacy and Safety of Prophylactic Vaccines against Cervical HPV Infection and Diseases among Women: A Systematic Review and Meta-Analysis. BMC Infect Dis 2011;11:13.
  • 13 World Health Organization. WHO guidance note: Comprehensive cervical cancer prevention and control: A healthier future for girls and women. WHO Press, World Health Organization, Geneva, Switzerland, 2013.
  • 14 Kreimer AR, Rodriguez AC, Hildesheim A, Herrero R, Porras C, Schiffman M, et al. Proof-of-Principle Evaluation of the Efficacy of Fewer Than Three Doses of a Bivalent HPV16/18 Vaccine. J Natl Cancer Inst 2011;103:1444-51.
  • 15 Tomljenovic L, Shaw CA, Spinosa JP. Human Papillomavirus (HPV) Vaccines as an Option for Preventing Cervical Malignancies: (How) Effective and Safe? Current Pharmaceutical Design 2013;19:1-10.
  • 16 Available from: http://www.fda.gov/ohrms/dockets/ac/06/briefing/2006-4222B3.pdf. [Last accessed on 13 May 2013].
  • 17 World Health Organization. Global Advisory Committee on Vaccine Safety, 2007. Wkly Epidemiol Rec 2007;3:17-24.
  • 18 Available from: www.cervicalcanceraction.org/comments/comments3.php. [Last accessed on 2013 Apr 12].
  • 19 Read TR, Hocking JS, Chen MY, Donovan B, Bradshaw CS, Fairley CK. The near disappearance of genital warts in young women 4 years after commencing a national human papillomavirus (HPV) vaccination program. Sex Transm Infect 2011;87:544-7.
  • 20 Brotherton JM, Fridman M, May CL, Chappell G, Saville AM, Gertig DM. Early effect of the HPV vaccination program on cervical abnormalities in Victoria, Australia: An ecological study. Lancet 2011;377:2085-92.
  • 21 Leval A, Herweijer E, Ploner A, Eloranta S, Fridman Simard J, Dillner J, et al. Quadrivalent Human Papillomavirus Vaccine Effectiveness: A Swedish National Cohort Study. J Natl Cancer Inst 2013;105:469-74.
  • 22 Rana MM, Huhtala H, Apter D, Eriksson T, Luostarinen T, Natunen K, et al. Understanding long-term protection of human papillomavirus vaccination against cervical carcinoma: Cancer registry-based follow-up. Int J Cancer 2013;132:2833-8.
  • 23 Einstein MH, Baron M, Levin MJ, Chatterjee A, Fox B, Scholar S, et al. Comparative immunogenicity and safety of human papillomavirus (HPV)-16/18 vaccine and HPV-6/11/16/18 vaccine: Follow-up from months 12-24 in a Phase III randomized study of healthy women aged 18-45 years. Hum Vaccin 2011;7:1343-58.
  • 24 Centers for Disease Control and Prevention. Vaccine Safety - Human Papillomavirus (HPV) Vaccine. Available from: http://www.cdc.gov./vaccinesafety/Vaccines/HPV/Index.html. [Last accessed on 2013 May 13].
  • 25 World Health Organization. Global Vaccine Safety. Observed rate of vaccine reactions, Human Papillomavirus Vaccine. Available from: http://www.WHO.int/nuvi/hpv/VaccRate_Infosheet_Poster.pdf. [Last accessed on 2013 May 13].
  • 26 Gee J, Naleway A, Shui I, Baggs J, Yin R, Li R, et al. Monitoring the safety of quadrivalent human papillomavirus vaccine: Findings from the vaccine safety datalink. Vaccine 2011;29:8279-84.
  • 27 Available from: http://www.cdc.gov/vaccinesafety/vaers/gardasil.htm. [Last accessed on 2013 Apr 12].
  • 28 MHRA Public Assessment Report. Cervarix (HPV vaccine): Update on UK safety covering the first two years of the HPV immunisation program, October 2010. Available from: http://www.mhra.gov.uk. [Last accessed on 2013 May 13].
  • 29 Tomljenovic L, Shaw CA. Death after quadrivalent human papillomavirus (HPV) vaccination: Causal or coincidental? Pharmaceutical regulatory affairs. Open Access 2012;S12:001. Available from: http://dx.doi.org/10.4172/2167-7689.S12-001. [Last accessed on 2013 May13].
  • 30 Review of a Published Report of cerebral vasculitis after vaccination with the Human Papillomavirus (HPV) Vaccine. CDC Vaccine Safety. November 9, 2012. Available from: http://www.cdc.gov/vaccinesafety/Activities/cisa/technical_report.html. Technical Report-Vaccine Safety. November 9, 2012. [Last accessed on 2013 May 13].
  • 31 Goldie SJ, Kohli M, Grima D, Weinstein MC, Wright TC, Bosch FX, et al. Projected clinical benefits and cost-effectiveness of a human papillomavirus 16/18 vaccine. J Natl Cancer Inst 2004;96:604-15.
  • 32 World Health Organization. Human papillomavirus vaccines WHO position paper. Wkly Epidemiolo Rec 2009;84:117-32.