Indian Journal of Neurosurgery 2013; 02(01): 071-076
DOI: 10.4103/2277-9167.110229
What Our Colleagues Say
Thieme Medical and Scientific Publishers Private Ltd.

Understanding complexities of synaptic transmission in medically intractable seizures: A paradigm of epilepsy research

Jyotirmoy Banerjee
,
Manjari Tripathi
1   Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
,
P. Sarat Chandra
2   Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
› Author Affiliations

Subject Editor:
Further Information

Publication History

Publication Date:
18 January 2017 (online)

Abstract

Investigating the changes associated with the development of epileptic state in humans is complex and requires a multidisciplinary approach. Understanding the intricacies of medically intractable epilepsy still remains a challenge for neurosurgeons across the world. A significant number of patients who has undergone resective brain surgery for epilepsy still continue to have seizures. The reason behind this therapy resistance still eludes us. Thus to develop a cure for the difficult to treat epilepsy, we need to comprehensively study epileptogenesis. Although various animal models are developed but none of them replicate the pathological conditions in humans. So the ideal way to understand epileptogenecity is to examine the tissue resected for the treatment of intractable epilepsy. Advanced imaging and electrical localization procedures are utilized to establish the epileptogenic zone in epilepsy patients. Further molecular and cytological studies are required for the microscopic analysis of brain samples collected from the epileptogenic focus. As alterations in inhibitory as well as excitatory synaptic transmission are key features of epilepsy, understanding the regulation of neurotransmission in the resected surgery zone is of immense importance. Here we summarize various modalities of in vitro slice analysis from the resected brain specimen to understand the changes in GABAergic and glutamatergic synaptic transmission in epileptogenic zone. We also review evidence pertaining to the proposed role of nicotinic receptors in abnormal synaptic transmission which is one of the major causes of epileptiform activity. Elucidation of current concepts in regulation of synaptic transmission will help develop therapies for epilepsy cases that cannot me managed pharmacologically.

 
  • References

  • 1 Scharfman HE, Pedley TA. Temporal lobe epilepsy. In: Gilman A. editor The neurobiology of disease. New York: Academic Press; 2006
  • 2 Penfield W, Jasper H. In: Penfield W, Jasper H. editors Epilepsy and the functional anatomy of the human brain. Boston: Little, Brown and Co; 1954
  • 3 Scott RA, Lhatoo SD, Sander JW. The treatment of epilepsy in developing countries: Where do we go from here?. Bull World Health Organ 2001; 79: 344-351
  • 4 Sato M, Racine RJ, McIntyre DC. Kindling: Basic mechanisms and clinical validity. Electroencephalogr Clin Neurophysiol 1990; 76: 459-472
  • 5 Löscher W. Animal models of epilepsy and epileptic seizures. In: Eadie MJ, Vajda F. editors Antiepileptic drugs, Handbook of experimental pharmacology. Berlin: Springer; 1999. p 19-62
  • 6 Goodman JH. Experimental models of status epilepticus. In: Peterson SL, Albertson TE. editors Neuropharmacology methods in epilepsy researchb. Boca raton: CRC Press; 1998. p 95-125
  • 7 Prasad AN, Prasad C, Stafstrom CE. Recent advances in the genetics of epilepsy: Insights from human and animal studies. Epilepsia 1999; 40: 1329-1352
  • 8 Chandra PS, Trpathi M. Epilepsy surgery: Recommendations for India. Ann Indian Acad Neurol 2010; 13: 87-93
  • 9 Sarkar C, Sharma MC, Deb P, Singh VP, Chandra PS, Gupta A. et al Neuropathological spectrum of lesions associated with intractable epilepsies: A 10-year experience with a series of 153 resections. Neurol India 2006; 54: 144-150
  • 10 McCormick DA, Huguenard JR. In: McCormick DA, Huguenard JR. editors Electrophysiology of the neuron: An interactive tutorial. Oxford: Oxford University Press; 1994
  • 11 Mathern GW, Babb TL, Pretorius JK, Leite JP. Reactive synaptogenesis and neuron densities for neuropeptide Y, somatostatin, and glutamate decarboxylase immunoreactivity in the epileptogenic human fascia dentata. J Neurosci 1995; 15: 3990-4004
  • 12 Mathern GW, Pretorius JK, Leite JP, Kornblum HI, Mendoza D, Lozada A. et al Hippocampal AMPA and NMDA mRNA levels and subunit immunoreactivity in human temporal lobe epilepsy patients and a rodent model of chronic mesial limbic epilepsy. Epilepsy Res 1998; 32: 154-171
  • 13 Mathern GW, Mendoza D, Lozada A, Pretorius JK, Dehnes Y, Danbolt NC. et al Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy. Neurology 1999; 52: 453-472
  • 14 Crino PB, Duhaime AC, Baltuch G, White R. Differential expression of glutamate and GABA-A receptor subunit mRNA in cortical dysplasia. Neurology 2001; 56: 906-913
  • 15 Cepeda C, André VM, Flores-Hernandez J, Nguyen OK, Wu N, Klapstein GJ. et al Pediatric cortical dysplasia: Correlations between neuroimaging, electrophysiology and location of cytomegalic neurons and balloon cells and glutamate/GABA synaptic circuits. Dev Neurosci 2005; 27: 59-76
  • 16 Cepeda C, Hurst RS, Flores-Hernandez J, Hernandez-Echeagaray E, Klapstein GJ, Boylan MK. et al Orphological and electrophysiological characterization of abnormal cell types in pediatric cortical dysplasia. J Neurosci Res 2003; 72: 472-486
  • 17 Cepeda C, André VM, Yamazaki I, Hauptman JS, Chen JY, Vinters HV. et al Comparative study of cellular and synaptic abnormalities in brain tissue samples from pediatric tuberous sclerosis complex and cortical dysplasia type II. Epilepsia 2010; 51: 160-165
  • 18 Scharfman HE. The neurobiology of epilepsy. Curr Neurol Neurosci Rep 2007; 7: 348-354
  • 19 Hosford DA, Crain BJ, Cao Z, Bonhaus DW, Friedman AH, Okazaki MM. et al Increased AMPA-sensitive quisqualate receptor binding and reduced NMDA receptor binding in epileptic human hippocampus. J Neurosci 1991; 11: 428-434
  • 20 Breese CR, Leonard SS. Glutamate receptor subtype expression in human postmortem brain. J Mol Neurosci 1993; 4: 263-275
  • 21 Bockers TM, Zimmer M, Muller A, Bergmann M, Brose N, Kreutz MR. Expression of the NMDA R1 receptor in selected human brain regions. Neuroreport 1994; 5: 965-969
  • 22 Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK. et al Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol Rev 2010; 62: 405-496
  • 23 Endele S, Rosenberger G, Geider K, Popp B, Tamer C, Stefanova I. et al Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat Genet 2010; 42: 1021-1026
  • 24 Ding YX, Zhang Y, He B, Yue WH, Zhang D, Zou LP. A possible association of responsiveness to adrenocorticotropic hormone with specific GRIN1 haplotypes in infantile spasms. Dev Med Child Neurol 2010; 52: 1028-1032
  • 25 Urban L, Aitken PG, Friedman A, Somjen GG. An NMDA-mediated component of excitatory synaptic input to dentate granule cells in ‘epileptic’ human hippocampus studied in vitro . Brain Res 1990; 515: 319-322
  • 26 Isokawa M, Avanzini G, Finch DM, Babb TL, Levesque MF. Physiologic properties of human dentate granule cells in slices prepared from epileptic patients. Epilepsy Res 1991; 9: 242-250
  • 27 Lieberman DN, Isokawa M, Fried I, Mody I. Properties of single NMDA channels in dentate granule cells of temporal lobe epilepsy patients. Epilepsia 1996; 37: 79
  • 28 Isokawa M, Levesque M, Fried I, Engel Jr J. Glutamate currents in morphologically identified human dentate granule cells in temporal lobe epilepsy. J Neurophysiol 1997; 77: 3355-3369
  • 29 de JC Moura, Tirapelli DP, Neder L, Saggioro FP, Sakamoto AC, Velasco TR. et al Amygdala gene expression of NMDA and GABA (A) receptors in patients with mesial temporal lobe epilepsy. Hippocampus 2012; 22: 92-97
  • 30 Miller JW, Ferrendelli JA. Characterization of GABAergic seizure regulation in the midline thalamus. Neuropharmacology 1990; 29: 649-655
  • 31 Telfeian AE, Connors BW. Layer-specific pathways for the horizontal propagation of epileptiform discharges in neocortex. Epilepsia 1998; 39: 700-708
  • 32 Isokawa-Akesson M, Wilson CL, Babb TL. Inhibition in synchronously firing human hippocampal neurons. Epilepsy Res 1989; 3: 236-247
  • 33 de Lanerolle NC, Kim JH, Robbins RJ, Spencer DD. Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res 1989; 495: 387-395
  • 34 Marco P, Sola RG, Pulido P, Alijarde MT, Sanchez A, Ramon y, Cajal S. et al Inhibitory neurons in the human epileptogenic temporal neocortex. An immunocytochemical study. Brain 1996; 119: 1327-1347
  • 35 Calcagnotto ME, Paredes MF, Tihan T, Barbaro NM, Baraban SC. Dysfunction of synaptic inhibition in epilepsy associated with focal cortical dysplasia. J Neurosci 2005; 25: 9649-9657
  • 36 Fritschy JM, Kiener T, Bouilleret V, Loup F. GABAergic neurons and GABAA-receptors in temporal lobe epilepsy. Neurochem Int 1999; 34: 435-445
  • 37 Chamberlain SE, Jane DE, Jones RS. Pre-and post-synaptic functions of kainate receptors at glutamate and GABA synapses in the rat entorhinal cortex. Hippocampus 2012; 22: 555-576
  • 38 Oliveira MS, Skinner F, Arshadmansab MF, Garcia I, Mello CF, Knaus HG. et al Altered expression and function of small-conductance (SK) Ca21-activated K1 channels in pilocarpine-treated epileptic rats. Brain Res 2010; 1348: 187-199
  • 39 Galanopoulou AS. Developmental patterns in the regulation of chloride homeostasis and GABAA receptor signaling by seizures. Epilepsia 2007; 48: 14-18
  • 40 Cherubini E, Gaiarsa JL, Ben-Ari Y. GABA: An excitatory transmitter in early postnatal life. Trends Neurosci 1991; 14: 515-519
  • 41 Cepeda C, André VM, Wu N, Yamazaki I, Uzgil B, Vinters HV. et al Immature neurons and GABA networks may contribute to epileptogenesis in pediatric cortical dysplasia. Epilepsia 2007; 48: 79-85
  • 42 Cepeda C, André VM, Levine MS, Salamon N, Miyata H, Vinters HV. et al Epileptogenesis in pediatric cortical dysplasia: The dysmature cerebral developmental hypothesis. Epilepsy Behav 2006; 9: 219-235
  • 43 André VM, Wu N, Yamazaki I, Nguyen ST, Fisher RS, Vinters HV. et al Cytomegalic interneurons: A new abnormal cell type in severe pediatric cortical dysplasia. J Neuropathol Exp Neurol 2007; 66: 491-504
  • 44 Chandra PS, Salamon N, Nguyen ST, Chang JW, Huynh MN, Cepeda C. et al Infantile spasm-associated microencephaly in tuberous sclerosis complex and cortical dysplasia. Neurology 2007; 68: 438-445
  • 45 Cepeda C, André VM, Hauptman JS, Yamazaki I, Huynh MN, Chang JW. et al Enhanced GABAergic network and receptor function in pediatric cortical dysplasia type IIB compared with tuberous sclerosis complex. Neurobiol Dis 2012; 45: 310-321
  • 46 André VM, Cepeda C, Vinters HV, Huynh M, Mathern GW, Levine MS. Pyramidal cell responses to gamma-aminobutyric acid differ in type I and type II cortical dysplasia. J Neurosci Res 2008; 86: 3151-3162
  • 47 Alkondon M, Pereira EF, Eisenberg HM, Albuquerque Ex. Nicotinic receptor activation in human cerebral cortical interneurons: A mechanism for inhibition and disinhibition of neuronal networks. J Neurosci 2000; 20: 66-75
  • 48 Dobelis P, Hutton S, Lu Y, Collins AC. GABAergic systems modulate nicotinic receptor-mediated seizures in mice. J Pharmacol Exp Ther 2003; 306: 1159-1166
  • 49 Damaj MI, Glassco W, Dukat M, Martin BR. Pharmacological characterization of nicotine-induced seizures in mice. J Pharmacol Exp Ther 1999; 291: 1284-1291
  • 50 Elmslie FV, Rees M, Williamson MP, Kerr M, Kjeldsen MJ, Pang KA. et al Genetic mapping of a major susceptibility locus for juvenile myoclonic epilepsy on chromosome 15q. Hum Mol Genet 1997; 6: 1329-1334
  • 51 Kuryatov A, Gerzanich V, Nelson M, Olale F, Lindstrom J. Mutation causing autosomal dominant nocturnal frontal lobe epilepsy alters Ca2+permeability, conductance, and gating of human a4β2 nicotinic acetylcholine receptors. J Neurosci 1997; 17: 9035-9047
  • 52 Adams CE, Yonchek JC, Schulz KM, Graw SL, Stitzel J, Teschke PU. et al Reduced Chrna7 expression in mice is associated with decreases in hippocampal markers of inhibitory function: Implications for neuropsychiatric diseases. Neuroscience 2012; 207: 274-282
  • 53 Avoli M, Barbarosie M, Lucke A, Nagao T, Lopantsev V, Köhling R. Synchronous GABA-mediated potentials and epileptiform discharges in the rat limbic system in vitro . J Neurosci 1996; 16: 3912-3924
  • 54 Köhling R, Vreugdenhil M, Bracci E, Jefferys JG. Ictal epileptiform activity is facilitated by hippocampal GABAA receptor-mediated oscillations. J Neurosci 2000; 20: 6820-6829
  • 55 Löscher W, Potschka H, Wlaz P, Danyz W, Parsons CG. Are neuronal nicotinic receptors a target for antiepileptic drug development? Studies in different seizure models in mice and rats. Eur J Pharmacol 2003; 466: 99-111
  • 56 Banerjee J, Alkondon M, Pereira EF, Albuquerque Ex. Regulation of GABAergic inputs to CA1 pyramidal neurons by nicotinic receptors and kynurenic acid. J Pharmacol Exp Ther 2012; 341: 500-509
  • 57 Banerjee J, Alkondon M, Albuquerque Ex. Kynurenic acid inhibits glutamatergic transmission to CA1 pyramidalneuronsviaa7 nAChR-dependent and-independent mechanisms. Biochem Pharmacol 2012; 15 (84) 1078-1087
  • 58 Albuquerque EX, Schwarcz R. Kynurenic acid as an Antagonist of a7 nicotinic acetylcholine receptors in the brain: Facts and challenges. Biochem Pharmacol 2013; 85: 1027-1032
  • 59 Scharfman HE, Ofer A. Pretreatment with L-kynurenine, the precursor to the excitatory amino acid antagonist kynurenic acid, suppresses epileptiform activity in combined entorhinal/hippocampal slices. Neurosci Lett 1997; 224: 115-118
  • 60 Wu HQ, Rassoulpour A, Goodman JH, Scharfman HE, Bertram EH, Schwarcz R. Kynurenate and 7-chlorokynurenate formation in chronically epileptic rats. Epilepsia 2005; 46: 1010-1016
  • 61 Scharfman HE, Hodgkins PS, Lee SC, Schwarcz R. Quantitative differences in the effects of de novo produced and exogenous kynurenic acid in rat brain slices. Neurosci Lett 1999; 274: 111-114