Subscribe to RSS

DOI: 10.4103/1450-1147.155752
Studies on the labeling of Ethylenediaminetetramethylene phosphonic acid, Methylene Diphosphonate, Sodium pyrophosphate and Hydroxyapatite with Lutetium-177 for use in nuclear medicine

For the treatment of skeletal metastasis, a therapeutic radionuclide tagged with a bone seeking ligand is required, while for radiation synovectomy (RS), a therapeutic radionuclide irreversibly attached to pre-formed particles of appropriate size is required. Radio lanthanides are mostly therapeutic, and ligands containing phosphate groups are predominantly bone seekers. Exploiting these facts, number of new therapeutic radiopharmaceuticals could be developed. Labeling of four phosphate containing materials was pursued in the present study. It was hypothesized that various 177 Lu-labeled bone-seeking complexes such as 177 Lu-ethylenediaminetetramethylene phosphonic acid (EDTMP), 177 Lu-methylene diphosphonate (MDP) and 177 Lu-pyrophosphate (PYP) could be developed as agents for palliative radiotherapy of bone pain due to skeletal metastases, and 177 Lu-Hydroxyapatite (HA) could be developed as an agent for radiosynovectomy of small joints. Lyophilized kit vials of EDTMP, MDP and sodium pyrophosphate (Na-PYP) were formulated. HA particles were synthesized locally and purity was checked by high-performance liquid chromatography (HPLC). 177 Lu was labeled with EDTMP, MDP, PYP, and HA and the behavior of all was studied by radio-thin layer chromatography (TLC) radio-HPLC and radio-electrophoresis. Radio-TLC confirmed the labeling. HPLC analysis too verified the labeling. Radio-electrophoresis results depicted peaks for 177 Lu-MDP, 177 Lu-EDTMP and 177 Lu-PYP at 3.37 0.06 cm, 5.53 0.15 cm and 7.03 0.06 cm respectively confirming negative charge on each specie as all migrated toward positive anode. All 3 methods verified the labeling. The study demonstrated that EDTMP, MDP and PYP form stable complexes with 177 Lu in injectable solution form. HA particulates could too be labeled with 177 Lu with high radiochemical yields (>98%) in suspension form. Former three could be utilized as bone-pain palliation agents for the treatment of bone metastases, and the later could be applied for the treatment of Rheumatoid arthritis of small joints. The study has also indicated the possibility of developing other numerous radiolanthanide analogs with the potentials of possible use in radiation therapy.
Keywords
177 Lu-labeled methylene diphosphonate - bone-pain palliation - radiation synovectomy - radio-labelingPublication History
Article published online:
21 May 2022
© 2015. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India