CC BY-NC-ND 4.0 · J Lab Physicians 2013; 5(02): 071-078
DOI: 10.4103/0974-2727.119843
Review Article

Recurrent Challenges for Clinicians: Emergence of Methicillin-resistant Staphylococcus aureus, Vancomycin Resistance, and Current Treatment Options

Bansidhar Tarai
Department of Microbiology, Max Super Speciality Hospital, Saket, New Delhi, India
,
Poonam Das
Department of Microbiology, Max Super Speciality Hospital, Saket, New Delhi, India
,
Dilip Kumar
Department of Microbiology, Max Super Speciality Hospital, Saket, New Delhi, India
› Author Affiliations
Source of Support: Max Super Speciality Hospital.

ABSTRACT

Gram-positive pathogens mainly, Staphylococcus aureus, Enterococcus and coagulase-negative Staphylococcus, are developing increasing resistance to glycopeptides that pose a problem in treating infections caused by these pathogens. Vancomycin is the treatment of choice in treating methicillin-resistant S. aureus (MRSA). Community-acquired MRSA is associated with infections in patients without recent history of hospital admission and without the classical risk factors for MRSA carriage (including healthcare personnel). MRSA poses new threats and challenges beyond the hospital with the emergence of community-acquired MRSA. Indiscriminate use of vancomycin leads to the emergence and spread of vancomycin resistance in multidrug resistant strains is of growing concern in the recent years. Minimum Inhibitory concentration (MIC) remains an important determinant in choosing the right antibiotics. Infections caused by MRSA strains with vancomycin MIC > 4 μg/mL leads to the vancomycin treatment failure. The Clinical Laboratory Standards Institute had also lowered the cut-off susceptibility and resistance breakpoints for vancomycin. Despite the availability of newer antimicrobial agents (Linezolid, Daptomycin, Tigecycline) for drug-resistant Gram-positive pathogens, clinicians and patients still need options for treatment of MRSA infection. There is a need to reduce the global burden of infections caused by Gram-positive pathogens and its resistant strains (mainly MRSA). Continuous efforts should be made to prevent the spread and the emergence of glycopeptide resistance by early detection of the resistant strains and using the proper infection control measures in the hospital setting.



Publication History

Article published online:
07 April 2020

© 2013.

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • REFERENCES

  • 1 Boucher HW. Challenges in anti-infective development in the era of bad bugs, no drugs: A regulatory perspective using the example of bloodstream infection as an indication. Clin Infectious Dis 2010;50:S4-9.
  • 2 Thati V, Shivannavar CT, Gaddad SM. Vancomycin resistance among methicillin resistant Staphylococcus aureus isolates from intensive care units of tertiary care hospitals in Hyderabad. Indian J Med Res 2011;134:704-8.
  • 3 Rivera AM, Boucher HW. Current concepts in antimicrobial therapy against select gram-positive organisms: Methicillin-resistant Staphylococcus aureus, penicillin-resistant Pneumococci, and vancomycin-resistant Enterococci. Mayo Clin Proc 2011;86:1230-42.
  • 4 Ratnaraja NV, Hawkey PM. Current challenges in treating MRSA: What are the options? Expert Rev Anti-Infect Ther 2008;6:601-18.
  • 5 Reddy CM, Thati V, Shivannavar CT, Gaddad SM. Vancomycin resistance among methicillin resistant Staphylococcus aureus isolates in Rayalaseema region Andhra Pradesh, South India. World J Sci Tech 2012;2:6-8.
  • 6 Loomba PS, Tanjea J, Mishra B. Methicillin and vancomycin resistant S. aureus in hospitalized patients. J Glob Infect Dis 2010;2:275-83.
  • 7 Tiwari HK, Sen MR. Emergence of vancomycin resistant Staphylococcus aureus (VRSA) from a tertiary care hospital from northern part of India. BMC Infect Dis 2006;6:156.
  • 8 Sharma P, Vishwanath G. Study of vancomycin susceptibility in methicillin-resistant Staphylococcus aureus isolated from clinical samples. Ann Trop Med Public Health 2012;5:178-80.
  • 9 Woodford N, Livermore DM. Infections caused by Gram-positive bacteria: A review of the global challenge. J Infect 2009;59 Suppl 1:S4-16.
  • 10 Appelbaum PC. MRSA--the tip of the iceberg. Clin Microbiol Infect 2006;12 Suppl 2:3-10.
  • 11 Tarai B, Das P, Kumar D, Budhiraja S. Comparative evaluation of paired blood culture (aerobic/aerobic) and single blood culture, along with clinical importance in catheter verses peripheral line at a tertiary care hospital. Int J Med Microbiol 2012:30:187-92.
  • 12 Sharma A, Kutty CV, Sabharwal U, Rathee S, Mohan H. Evaluation of Sepsis screen for diagnosis of neonatal septicemia. Indian J Pediatr 1993;60:559-63.
  • 13 Dhanalakshmi TA, Umapathy BL, Mohan DR. Prevalence of Methicillin, vancomycin and multidrug resistance among Staphylococcus aureus. J Clin Diagn Res 2012;6:974-7.
  • 14 Nicolaou KC, Boddy CN, Bräse S, Winssinger N. Chemistry, biology, and medicine of the glycopeptide antibiotics. Angew Chem Int Ed 1999;38:2096-152.
  • 15 Ramana BV, Chaudhury A. Rising incidence of high MIC for vancomycin among Staphylococcus aureus strains at a tertiary care hospital in South India. J Pharm Bioallied Sci 2012;4:173.
  • 16 Banwana K, Senokb AC, Rotimic VO. Antibiotic therapeutic options for infections caused by drug-resistant Gram-positive cocci. J Infect Public Health 2009;2:62-73.
  • 17 Schwarz S, Silley P, Simjee S, Woodford N, van Duijkeren E, Johnson AP, et al. Editorial: Assessing the antimicrobial susceptibility of bacteria obtained from animals. J Antimicrob Chemother 2010;65:601-4.