CC BY-NC-ND 4.0 · Indian J Med Paediatr Oncol 2011; 32(01): 38-42
DOI: 10.4103/0971-5851.81889

Carnitine levels and cardiac functions in children with solid malignancies receiving doxorubicin therapy

Anant Khositseth
Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
Suwadee Jirasakpisarn
Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
Samart Pakakasama
Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
Lulin Choubtuym
Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
Duangrurdee Wattanasirichaigoon
Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
› Institutsangaben
Source of Support Mahidol University (2552-4)


Aim: Previous studies demonstrated l-carnitine decreasing doxorubicin-induced cardiotoxicity. Our objectives were to study carnitine levels and cardiac functions in children treated with doxorubicin and the effect of short-term l-carnitine supplements. Materials and Methods: Serial carnitine levels and cardiac functions were obtained in children with newly diagnosed solid malignancies before doxorubicin, after cumulative doses of ≥150 mg/m 2 and ≥300 mg/m 2 , respectively. Oral l-carnitine 100 mg/kg/day for 3 days were given to the children treated with doxorubicin at cumulative doses of ≥150 mg/m 2 and ≥300 mg/m 2 . Carnitine levels and cardiac functions were also obtained in those children before and after short-term oral l-carnitine at each cumulative dose of doxorubicin. Results: Five children (3 females), median age of 9.1 years (range 1.5-13 years) with newly diagnosed solid malignancies were enrolled in the study. Free carnitine (FC) tended to decrease while acyl-carnitine (AC) increased making AC/FC ratio increased after cumulative dose of ≥150 and ≥300 mg/m 2 but the statistics was not significant. Left ventricular (LV) systolic function was not significantly changed. Interestingly, LV global function (LV myocardial performance index) was significantly increased after 150 mg/m 2 (median 0.39, 0.27-0.51) and 300 mg/m 2 (median 0.46, 0.27-0.50) when compared to baseline (median 0.28, 0.14-0.48) (P=0.05). Carnitine levels and cardiac functions were not significantly changed after oral l-carnitine supplement at cumulative dose of ≥150 mg/m 2 (n=6) and ≥300 mg/m 2 (n=9). Conclusions: Carnitine levels tended to decrease after doxorubicin treatment. LV global dysfunction was documented early after doxorubicin. However, short-term l-carnitine supplement did not improve cardiac function.


Artikel online veröffentlicht:
16. August 2021

© 2011. Indian Society of Medical and Paediatric Oncology. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

  • References

  • 1 Carter SK. Adriamycin: A review. J Natl Cancer Inst 1975;55:1265-74.
  • 2 Kantrowitz NE, Bristow MR. Cardiotoxicity of antitumor agents. Prog Cardiovasc Dis 1984;27:195-200.
  • 3 al-Shabanah O, Mansour M, el-Kashef H, al-Bekairi A. Captopril ameliorates myocardial and hematological toxicities induced by adriamycin. Biochem Mol Biol Int 1998;45:419-27.
  • 4 Huang XM, Zhu WH, Kang ML. Study on the effect of doxorubicin on expressions of genes encoding myocardial sarcoplasmic reticulum Ca2+ transport proteins and the effect of taurine on myocardial protection in rabbits. J Zhejiang Univ Sci 2003;4:114-20.
  • 5 Myers C. The role of iron in doxorubicin-induced cardiomyopathy. Semin Oncol 1998;25:10-4.
  • 6 Sayed-Ahmed MM, Shaarawy S, Shouman SA, Osman AM. Reversal of doxorubicin-induced cardiac metabolic damage by L-carnitine. Pharmacol Res 1999;39:289-95.
  • 7 Sayed-Ahmed MM. Increased serum and cardiac acyl-carnitine/free carnitine ratio during development of doxorubicin-induced cardiotoxicity. Saudi Pharm J 2007;15:120-6.
  • 8 Bryant J, Picot J, Levitt G, Sullivan I, Baxter L, Clegg A. Cardioprotection against the toxic effects of anthracyclines given to children with cancer: A systematic review. Health Technol Assess 2007;11:1-84.
  • 9 Sayed-Ahmed MM, Shouman SA, Rezk BM, Khalifa MH, Osman AM, El-Merzabani MM. Propionyl-L-carnitine as potential protective agent against adriamycin-induced impairment of fatty acid beta-oxidation in isolated heart mitochondria. Pharmacol Res 2000;41:143-50.
  • 10 Alhomida AS, Duhaiman AS, al-Jafari AA, Junaid MA. Determination of L-carnitine, acylcarnitine and total carnitine levels in plasma and tissues of camel (Camelus dromedarius). Comp Biochem Physiol B Biochem Mol Biol 1995;111:441-5.
  • 11 Pastoris O, Dossena M, Foppa P, Catapano M, Arbustini E, Bellini O, et al. Effect of L carnitine on myocardial metabolism: Results of a balanced, placebo-controlled, double-blind study in patients undergoing open heart surgery. Pharmacol Res 1998;37:115-22.
  • 12 Nemoto S, Yasuhara K, Nakamura K, Miyoshi Y, Sakai A. Plasma carnitine concentrations in patients undergoing open heart surgery. Ann Thorac Cardiovasc Surg 2004;10:19-22.
  • 13 Tei C, Ling LH, Hodge DO, Bailey KR, Oh JK, Rodeheffer RJ, et al. New index of combined systolic and diastolic myocardial performance: A simple and reproducible measure of cardiac function-a study in normals and dilated cardiomyopathy. J Cardiol 1995;26:357-66.
  • 14 Eto G, Ishii M, Tei C, Tsutsumi T, Akagi T, Kato H. Assessment of global left ventricular function in normal children and in children with dilated cardiomyopathy. J Am Soc Echocardiogr 1999;12:1058-64.
  • 15 Singal PK, Deally CM, Weinberg LE. Subcellular effects of adriamycin in the heart: A concise review. J Mol Cell Cardiol 1987;19:817-28.
  • 16 Von Hoff DD, Layard MW, Basa P, Davis HL Jr, Von Hoff AL, Rozencweig M, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 1979;91:710-7.
  • 17 Okada Y, Horikawa K, Sano M. Echocardiographic evaluation of cardiotoxicity induced by anthracycline therapy. Gan To Kagaku Ryoho 1997;24:585-9.
  • 18 Senju N, Ikeda S, Koga S, Miyahara Y, Tsukasaki K, Tomonaga M, et al. The echocardiographic Tei-index reflects early myocardial damage induced by anthracyclines in patients with hematological malignancies. Heart Vessels 2007;22:393-7.
  • 19 Yaris N, Akyuz C, Coskun T, Buyukpamukcu M. Serum carnitine levels of pediatric cancer patients. Pediatr Hematol Oncol 2002;19:1-8.
  • 20 Yaris N, Ceviz N, Coskun T, Akytuz C, Buyukpamukcu M. Serum carnitine levels during the doxorubicin therapy. Its role in cardiotoxicity. J Exp Clin Cancer Res 2002;21:165-70.
  • 21 Yoon HR, Hong YM, Boriack RL, Bennett MJ. Effect of L-carnitine supplementation on cardiac carnitine palmitoyltransferase activities and plasma carnitine concentrations in adriamycin-treated rats. Pediatr Res 2003;53:788-92.
  • 22 Andrieu-Abadie N, Jaffrezou JP, Hatem S, Laurent G, Levade T, Mercadier JJ. L-carnitine prevents doxorubicin-induced apoptosis of cardiac myocytes: Role of inhibition of ceramide generation. FASEB J 1999;13:1501-10.
  • 23 Goa KL, Brogden RN. L-Carnitine. A preliminary review of its pharmacokinetics, and its therapeutic use in ischaemic cardiac disease and primary and secondary carnitine deficiencies in relationship to its role in fatty acid metabolism. Drugs 1987;34:1-24.
  • 24 Kawasaki N, Lee JD, Shimizu H, Ueda T. Long-term L-carnitine treatment prolongs the survival in rats with adriamycin-induced heart failure. J Card Fail 1996;2:293-9.