CC BY-NC-ND 4.0 · Indian J Med Paediatr Oncol 2010; 31(01): 8-17
DOI: 10.4103/0971-5851.68846
REVIEW ARTICLE

NEO adjuvant chemotherapy in breast cancer: What have we learned so far?

Nirmal V Raut
Department of Medical Oncology, Terna Sahyadri Hospital, Nerul, Navi Mumbai, India
,
Nilesh Chordiya
Department of Surgical Oncology, Terna Sahyadri Hospital, Nerul, Navi Mumbai, India
› Author Affiliations

Source of Support Nil.

Abstract

Neoadjuvant chemotherapy (NACT) in breast cancer has undergone continuous evolution over the last few decades to establish its role in the combined modality management of these tumors. The process of evolution is still far from over. Many questions are still lurking in the minds of oncologists treating breast cancer. This review analyzes the evidence from metaanlyses, major multiinstitutional prospective trials, retrospective institutional series and systematic reviews in breast cancer to determine the current standards and controversies in NACT. The most effective drugs, their advantages, issues and controversies in delivery as well as the criteria for response are reviewed. A summary of evidence-based consensus is presented and unresolved aspects are discussed.



Publication History

Article published online:
19 November 2021

© 2010. Indian Society of Medical and Paediatric Oncology. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/.)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Halsted WS. I. The Results of Operations for the Cure of Cancer of the Breast Performed at the Johns Hopkins Hospital from June, 1889, to January, 1894. Ann Surg 1894;20:497-555.
  • 2 Haagensen CD, Bodian CA. A personal experience with Halsted′s radical mastectomy. Ann Surg 1984;199:143-50.
  • 3 Nemoto T, Vana J, Bedwani RN, Baker HW, McGregor FH, Murphy GP. Management and survival of female breast cancer: Results of national survey by the American College of Surgens. Cancer 1980;45:2917-24.
  • 4 Butcher HR Jr. Radical mastectomy for mammary carcinoma. Ann Sug 1963;157:165-6.
  • 5 Lacour J, Bucalossi P, Cacers E, Jacobelli G, Koszarowski T, Le M, et al. Radical mastectomy versus radical mastectomy plus internal mammary dissection. Five-year results of an international cooperative study. Cancer 1976;37:206-14.
  • 6 Schottenfeld D, Nash AG, Robbins GF, Beattie EJ Jr. Ten year results of treatment of primary operable breast carcinoma: A summary of 304 patients evaluated by the TNM system. Cancer 1976;38:1001-7.
  • 7 Robbins GF, Berg J. Curablity of patients with invasive breast carcinoma based on a 30-year study. World J Surg 1977;1:284-6.
  • 8 Shannon C, Smith I. Is there still a role for neoadjuvant therapy in breast cancer? Crit Rev Oncol Hematol 2003;45:77-90.
  • 9 Cameron DA, Anderson ED, Levack P, Hawkins RA, Anderson TJ, Leonard RC, et al. Primary systemic therapy for operable breast cancer: 10-year survival data after chemotherapy and hormone therapy. Br J Cancer 1997;76:1099-105.
  • 10 Bonadonna G, Bagyi GH, Valgussa P. A clinical guide to therapy. Textbook of breast cancer. 3rd ed. London and New York: Martin Dunitz; 2006.
  • 11 Bonadonna G, Valagussa P, Brambilla C, Ferrari L, Moliterni A, Terenziani M, et al. Primary chemotherapy in operable breast cancer: Eight-year experience at the Milan Cancer Institute. J Clin Oncol 1998;16:93-100.
  • 12 Fisher B, Bryant J, Wolmark N, Mamounas E, Brown A, Fisher ER, et al. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol 1998;16:2672-85.
  • 13 Mieog JS, van der Hage JA, van de Velde CJ. Neoadjuvant chemotherapy for operable breast cancer. Br J Surg 2007;94:1189-200.
  • 14 Danforth DN Jr, Cowan K, Altemus R, Merino M, Chow C, Berman A, et al. Preoperative FLAC/granulocyte-colony-stimulating factor chemotherapy for stage II breast cancer: A prospective randomized trial. Ann Surg Oncol 2003;10: 635-44.
  • 15 Broet P, Scholl SM, de la Rochefordiere A, Fourquet A, Moreau T, De Rycke Y, et al. Short and long-term effects on survival in breast cancer patients treated by primary chemotherapy: An updated analysis of a randomized trial. Breast Cancer Res Treat 1999;58:151-6.
  • 16 Mauriac L, MacGrogan G, Avril A, Durand M, Floquet A, Debled M, et al. Neoadjuvant chemotherapy for operable breast carcinoma larger than 3 cm: A unicentre randomized trial with a 124-month median follow-up. Institut Bergonie Bordeaux Group Sein (IBBGS). Ann Oncol 1999;10:47-52.
  • 17 Wolmark N, Wang J, Mamounas E, Bryant J, Fisher B. Preoperative chemotherapy in patients with operable breast cancer: Nine-year results from National Surgical Adjuvant Breast and Bowel Project B-18. J Natl Cancer Inst Monogr 2001:96-102.
  • 18 Gianni L, Baselga J, Eiermann W, Guillem Porta V, Semiglazov V, Lluch A, et al. European Cooperative Trial in Operable Breast Cancer (ECTO): Improved freedom fro progression (FFP) from adding paclitaxel (T) to doxorubicin (A) followed by cyclophosphamide methotrexate and fluorouracil (CMF). J Clin Oncol (Meeting Abstracts) 2005;23:513.
  • 19 Van der Hage JA, van de Velde CJ, Julien JP, Tubiana-Hulin M, Vandervelden C, Duchateau L. Preoperative chemotherapy in primary operable breast cancer: Results from the European Organization for Research and Treatment of Cancer trial 10902. J Clin Oncol 2001;19:4224-37.
  • 20 Cleator SJ, Makris A, Ashley SE, Lal R, Powles TJ. Good clinical response of breast cancers to neoadjuvant chemoendocrine therapy is associated with improved overall survival. Ann Oncol 2005;16:267-72.
  • 21 Semiglazov VF, Topuzov EE, Bavli JL, Moiseyenko VM, Ivanova OA, Seleznev IK, et al. Primary (neoadjuvant) chemotherapy and radiotherapy compared with primary radiotherapy alone in stage IIb-IIIa breast cancer. Ann Oncol 1994;5:591-5.
  • 22 Gazet JC, Ford HT, Gray R, McConkey C, Sutcliffe R, Quilliam J, et al. Estrogen-receptor-directed neoadjuvant therapy for breast cancer: Results of a randomised trial using formestane and methotrexate, mitozantrone and mitomycin C (MMM) chemotherapy. Ann Oncol 2001;12:685-91.
  • 23 Enomoto K, Ikeda T, Matsui A, Kitajima M, Koh J, Masamura S, et al. Neoadjuvant therapy in stage II with T>=4CM and stage III breast cancer. Eur J Cancer 1998;34:33.
  • 24 Ostapenko V, Pipiriene T, Valuckas K. Primary chemotherapy in conservative treatment of stage II breast cancer. Eur J Cancer 1998;34:34.
  • 25 Jakesz R. Comparison of pre- vs. postoperative chemotherapy in breast cancer patients: four-year results of Austrian Breast and Colorectal Cancer Study Group (ABCSG) Trial 7. J Clin Oncol (Meeting Abstracts) 2001;20:125.
  • 26 Mauri D, Pavlidis N, Ioannidis JP. Neoadjuvant versus adjuvant systemic treatment in breast cancer: A meta-analysis. J Natl Cancer Inst 2005;97:188-94.
  • 27 Cuppone F, Bria E, Carlini P, Milella M, Felici A, Sperduti I, et al. Taxanes as primary chemotherapy for early breast cancer: Meta-analysis of randomized trials. Cancer 2008; 113:238-46.
  • 28 Scholl SM, Asselain B, Palangie T, Dorval T, Jouve M, Garcia Giralt E, et al. Neoadjuvant chemotherapy in operable breast cancer. Eur J Cancer 1991;27:1668-71.
  • 29 Scholl SM, Fourquet A, Asselain B, Pierga JY, Vilcoq JR, Durand JC, et al. Neoadjuvant versus adjuvant chemotherapy in premenopausal patients with tumours considered too large for breast conserving surgery: Preliminary results of a randomised trial: S6. Eur J Cancer 1994;30A:645-52.
  • 30 Makris A, Powles TJ, Ashley SE, Chang J, Hickish T, Tidy VA, et al. A reduction in the requirements for mastectomy in a randomized trial of neoadjuvant chemoendocrine therapy in primary breast cancer. Ann Oncol 1998;9:1179-84.
  • 31 Rastogi P, Anderson SJ, Bear HD, Geyer CE, Kahlenberg MS, Robidoux A, et al. Preoperative chemotherapy: Updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol 2008;26:778-85.
  • 32 A′Hern RP, Smith IP, Ebbs SR. Chemotherapy and survival in advanced breast cancer: The inclusion of doxorubicin in Copper type regimens. Br J Cancer 1993;67:801-5.
  • 33 Fossati R, Confalonieri C, Torri V, Ghislandi E, Penna A, Pistotti V, et al. Cytotoxic and hormonal treatment for metastatic breast cancer: A systematic review of published randomized trials involving 31,510 women. J Clin Oncol 1998;16:3439-60.
  • 34 Polychemotherapy for early breast cancer: An overview of the randomised trials. Early Breast Cancer Trialists′ Collaborative Group. Lancet 1998;352:930-42.
  • 35 Malamos N, Kosmas C, Antonopoulos MJ. Prospective randomized study of neoadjuvant chemotherapy (NACT) with paclitaxel/epirubicin (PE) versus fluorouracil/ epirubicin/cyclophosphamide (FEC) in operable stage II-IIIA breast cancer (BC). Ann Oncol 1998;9:22.
  • 36 Heys SD, Hutcheon AW, Sarkar TK, Ogston KN, Miller ID, Payne S, et al. Neoadjuvant docetaxel in breast cancer: 3-year survival results from the Aberdeen trial. Clin Breast Cancer 2002;3:S69-74.
  • 37 Smith IC, Heys SD, Hutcheon AW, Miller ID, Payne S, Gilbert FJ, et al. Neoadjuvant chemotherapy in breast cancer: Significantly enhanced response with docetaxel. J Clin Oncol 2002;20:1456-66.
  • 38 Luporsi E, Vanlemmens L, Coudert B. Six cycles of FEC 100 vs 6 cycles of epirubicin-docetaxel (ED) as neoadjuvant chemotherapy in operable breast cancer patients (Pts): Preliminary results of a randomized phase II trial of GIREC S01. J Clin Oncol 2000;18:19.
  • 39 Bear HD, Anderson S, Brown A, Smith R, Mamounas EP, Fisher B, et al. The effect on tumor response of adding sequential preoperative docetaxel to preoperative doxorubicin and cyclophosphamide: Preliminary results from National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J Clin Oncol 2003;21:4165-74.
  • 40 Bear HD, Anderson S, Smith RE, Geyer CE Jr, Mamounas EP, Fisher B, et al. Sequential preoperative or postoperative docetaxel added to preoperative doxorubicin plus cyclophosphamide for operable breast cancer: National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J Clin Oncol 2006;24:2019-27.
  • 41 Evans TR, Yellowlees A, Foster E, Earl H, Cameron DA, Hutcheon AW, et al. Phase III randomized trial of doxorubicin and docetaxel versus doxorubicin and cyclophosphamide as primary medical therapy in women with breast cancer: An anglo-celtic cooperative oncology group study. J Clin Oncol 2005;23:2988-95.
  • 42 Diιras V, Fumoleau P, Romieu G, Tubiana-Hulin M, Namer M, Mauriac L, et al. Randomized parallel study of doxorubicin plus paclitaxel and doxorubicin plus cyclophosphamide as neoadjuvant treatment of patients with breast cancer. J Clin Oncol 2004;22:4958-65.
  • 43 Citron ML, Berry DA, Cirrincione C, Hudis C, Winer EP, Gradishar WJ, et al. Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: First report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J Clin Oncol 2003;21:1431-9.
  • 44 Untch M, Konecy G, Ditsch N. Dose dense sequential Epirubicin-Paclitaxel as preoperative treatment of Breast cancer: Results of a randomized AGO study. Pro Am Soc Clin Onco 2002;21:133a.
  • 45 Von Minkwitz G, Raab G, Scheuette M. Dose dense versus sequential adriamycin /docetaxel combination as preoperative chemotherapy in operable breast cancer-primary endpoint analysis of GEPARDUO study. Pro Am Soc Clin Onco 2002;21:168a.
  • 46 Jones S, Holmes FA, O′Shaughnessy J, Blum JL, Vukelja SJ, McIntyre KJ, et al. Docetaxel With Cyclophosphamide Is Associated With an Overall Survival Benefit Compared With Doxorubicin and Cyclophosphamide: 7-Year Follow-Up of US Oncology Research Trial 9735. J Clin Oncol 2009;27:1177-83.
  • 47 Slamon D, Eiermann W, Robert N. Phase III randomized trial comparing doxorubicin and cyclophosphamide followed by docetaxel (AC;T) with doxorubicin and cyclophosphamide followed by docetaxel and trastuzumab (AC;TH) with docetaxel, carboplatin and trastuzumab (TCH) in HER2 positive early breast cancer patients: BCIRG 006 study. Breast Cancer Res Treat 2005;94:S5.
  • 48 Von Minckwitz G, Kόmmel S, Vogel P, Hanusch C, Eidtmann H, Hilfrich J, et al. Neoadjuvant vinorelbine-capecitabine versus docetaxel-doxorubicin-cyclophosphamide in early nonresponsive breast cancer: Phase III randomized GeparTrio trial. J Natl Cancer Inst 2008;100:542-51.
  • 49 Buzdar AU, Ibrahim NK, Francis D, Booser DJ, Thomas ES, Theriault RL, et al. Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: Results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer. J Clin Oncol 2005;23:3676-85.
  • 50 Buzdar AU, Valero V, Ibrahim NK, Francis D, Broglio KR, Theriault RL, et al. Neoadjuvant therapy with paclitaxel followed by 5-fluorouracil, epirubicin, and cyclophosphamide chemotherapy and concurrent trastuzumab in human epidermal growth factor receptor 2-positive operable breast cancer: An update of the initial randomized study population and data of additional patients treated with the same regimen. Clin Cancer Res 2007;13:228-33.
  • 51 Gianni L, Semiglazov V, Manikhas GM, Eiermann W, Lluch A, Tjulandin S, et al. Neoadjuvant trastuzumab in locally advanced breast cancer (NOAH): Antitumour and safety analysis. 2007 ASCO Annual Meeting Proceedings 43rd American Society of Clinical Oncology Annual Meeting; 1-5 June 2007; Chicago, IL. Abstract 532.
  • 52 Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001;344:783-92.
  • 53 Untch M, Rezai M, Loibl S, Fasching PA, Huober J, Tesch H, et al. Neoadjuvant treatment of HER2 overexpressing primary breast cancer with trastuzumab given concomitantly to epirubicin/cyclophosphamide followed by docetaxel ΁ capecitabine. First analysis of efficacy and safety of the GBG/AGO multicenter intergroup-study ′GeparQuattro′. Presented at: 6th European Breast Cancer Conference; 15-19 April 2008; Berlin, Germany. Abstract 1LB.
  • 54 Greil R, Moik M, Reitsamer R, Ressler S, Stoll M, Namberger K, et al. Neoadjuvant bevacizumab, docetaxel and capecitabine combination therapy for HER2/neu-negative invasive breast cancer: Efficacy and safety in a phase II pilot study. Eur J Surg Oncol 2009;35:1048-54.
  • 55 Chagpar AB, Middleton LP, Sahin AA, Dempsey P, Buzdar AU, Mirza AN, et al. Accuracy of physical examination, ultrasonography, and mammography in predicting residual pathologic tumor size in patients treated with neoadjuvant chemotherapy. Ann Surg 2006;243:257-64.
  • 56 Partridge SC, Gibbs JE, Lu Y, Esserman LJ, Sudilovsky D, Hylton NM. Accuracy of MR imaging for revealing residual breast cancer in patients who have undergone neoadjuvant chemotherapy. AJR Am J Roentgenol 2002;179:1193-9.
  • 57 Rieber A, Brambs HJ, Gabelmann A, Heilmann V, Kreienberg R, Kόhn T. Breast MRI for monitoring response of primary breast cancer to neo-adjuvant chemotherapy. Eur Radiol 2002;12: 1711-9.
  • 58 Cheung YC, Chen SC, Su MY, See LC, Hsueh S, Chang HK, et al. Monitoring the size and response of locally advanced breast cancers to neoadjuvant chemotherapy (weekly paclitaxel and epirubicin) with serial enhanced MRI. Breast Cancer Res Treat 2003;78:51-8.
  • 59 Belli P, Romani M, Costantini M, Magistrelli A, Terribile D, Nardone L, et al. Role of magnetic resonance imaging in the pre and postchemotherapy evaluation in locally advanced breast carcinoma. Rays 2002;27:279-90.
  • 60 Bollet MA, Thibault F, Bouillon K, Meunier M, Sigal-Zafrani B, Savignoni A, et al. Role of dynamic magnetic resonance imaging in the evaluation of tumor response to preoperative concurrent radiochemotherapy for large breast cancers: A prospective phase II study. Int J Radiat Oncol Bio Phys 2007;69:13-8.
  • 61 Segara D, Krop IE, Garber JE, Winer E, Harris L, Bellon JR, et al. Does MRI predict pathologic tumor response in women with breast cancer undergoing preoperative chemotherapy? J Surg Oncol 2007;96:474-80.
  • 62 Wasser K, Sinn HP, Fink C, Klein SK, Junkermann H, Lόdemann HP, et al. Accuracy of tumor size measurement in breast cancer using MRI is influenced by histological regression induced by neoadjuvant chemotherapy. Eur Radiol 2003;13:1213-23.
  • 63 Denis F, Desbiez-Bourcier AV, Chapiron C, Arbion F, Body G, Brunereau L. Contrast enhanced magnetic resonance imaging underestimates residual disease following neoadjuvant docetaxel based chemotherapy for breast cancer. Eur J Surg Oncol 2004;30:1069-76.
  • 64 Kwong MS, Chung GG, Horvath LJ, Ward BA, Hsu AD, Carter D, et al. Postchemotherapy MRI overestimates residual disease compared with histopathology in responders to neoadjuvant therapy for locally advanced breast cancer. Cancer J 2006;12:212-21.
  • 65 Wahl RL, Zasadny K, Helvie M, Hutchins GD, Weber B, Cody R. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: Initial evaluation. J Clin Oncol 1993;11:2101-11.
  • 66 Jansson T, Westlin JE, Ahlstrφm H, Lilja A, Lεngstrφm B, Bergh J. Positron emission tomography studies in patients with locally advanced and/or metastatic breast cancer: A method for early therapy evaluation? J Clin Oncol 1995;13:1470-7.
  • 67 Bassa P, Kim EE, Inoue T, Wong FC, Korkmaz M, Yang DJ, et al. Evaluation of preoperative chemotherapy using PET with fluorine-18-fluorodeoxyglucose in breast cancer. J Nucl Med 1996;37:931-8.
  • 68 Sataloff DM, Mason BA, Prestipino AJ, Seinige UL, Lieber CP, Baloch Z. J Am Coll Surg. 1995 Mar;180(3):297-306.
  • 69 Smith IC, Welch AE, Hutcheon AW, Miller ID, Payne S, Chilcott F, et al. Positron emission tomography using [(18)F]-fluorodeoxy-D-glucose to predict the pathologic response of breast cancer to primary chemotherapy. J Clin Oncol 2000;18:1676-88.
  • 70 Sataloff DM, Mason BA, Prestipino AJ, Seinige UL, Lieber CP, Baloch Z. Pathologic response to induction chemotherapy in locally advanced carcinoma of the breast: a determinant of outcome. J Am Coll Surg 1995;180:297-306.
  • 71 Chevallier B, Roche H, Olivier JP, Chollet P, Hurteloup P. Inflammatory breast cancer. Pilot study of intensive induction chemotherapy (FEC-HD) results in a high histologic response rate. Am J Clin Oncol 1993;16:223-8.
  • 72 Feldman LD, Hortobagyi GN, Buzdar AU, Ames FC, Blumenschein GR. Pathological assessment of response to induction chemotherapy in breast cancer. Cancer Res 1986;46:2578-81.
  • 73 Symmans WF, Peintinger F, Hatzis C, Rajan R, Kuerer H, Valero V, et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol 2007;25:4414-22.
  • 74 Bhattacharyya A, Ear US, Koller BH, Weichselbaum RR, Bishop DK. The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA crosslinking agent cisplatin. J Biol Chem 2000;275:23899-903.
  • 75 Garber JE, Richardson A, Harris LN. Neo-adjuvant cisplatin (CDDP) in triple-negative breast cancer (BC). Proceedings San Antonio Breast Cancer Symposium, 2006.
  • 76 Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 2007;13:2329-34.