CC BY-NC-ND 4.0 · Indian J Radiol Imaging 2016; 26(04): 475-481
DOI: 10.4103/0971-3026.195793
Women Imaging

Accuracy of MRI for prediction of response to neo-adjuvant chemotherapy in triple negative breast cancer compared to other subtypes of breast cancer

Gaurav J Bansal
The Breast Centre, University Hospital of Llandough, Penarth, United Kingdom
,
Divya Santosh
The Breast Centre, University Hospital of Llandough, Penarth, United Kingdom
› Author Affiliations
Financial support and sponsorship Nil.

Abstract

Purpose: The aim of this study was to compare the accuracy of magnetic resonance imaging (MRI) for the prediction of response to neo-adjuvant chemotherapy in triple negative (TN) breast cancer, with respect to other subtypes. Materials and Methods: There were a total of 1610 breast cancers diagnosed between March 2009 and August 2014, out of which 82 patients underwent MRI before and after neo-adjuvant chemotherapy but just before surgery. TN cancers were analyzed with respect to others subtypes. Accuracy of MRI for prediction of pathological complete response was compared between different subtypes by obtaining receiver operating characteristic (ROC) curves. The Statistical Package for the Social Sciences version 21 was used for all data analysis, with P value of 0.05 as statistically significant. Results: Out of 82 patients, 29 were luminal (HR+/HER2−), 23 were TN (HR−, HER2−), 11 were HER2 positive (HR−, HER2+), and 19 were of hybrid subtype (HR+/HER2+). TN cancers presented as masses on the pre-chemotherapy MRI scan, were grade 3 on histopathology, and showed concentric shrinkage following chemotherapy. TN cancers were more likely to have both imaging and pathological complete response following chemotherapy (P = 0.055) in contrast to luminal cancers, which show residual cancer. ROC curves were constructed for the prediction of pathological complete response with MRI. For the TN subgroup, MR had a sensitivity of 0.745 and specificity of 0.700 (P = 0.035), with an area under curve of 0.745 (95% confidence interval: 0.526–0.965), which was significantly better compared to other subtypes. Conclusion: TN breast cancers present as masses and show concentric shrinkage following chemotherapy. MRI is most accurate in predicting response to chemotherapy in the TN group, compared to others subtypes. MRI underestimates residual disease in luminal cancers.



Publication History

Article published online:
30 July 2021

© 2016. Indian Radiological Association. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • References

  • 1 National Cancer Institute. Surveillance, epidemiology and End results (SEER) programme. SEER website. Available from http://www.seer.cancer.gov/. [Last accessed on 2016 Jun].
  • 2 van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002;415:530-6.
  • 3 Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A. AJCC Cancer staging manual. 7th ed. New York, NY: Springer; 2009. p. 347-76.
  • 4 Loo CE, Straver ME, Rodenhuis S, Muller SH, Wesseling J, Peeters MJ, et al. Magnetic resonance imaging response monitoring of breast cancer during neo-adjuvant chemotherapy: Relevance of breast cancer subtype. J Clin Oncol 2011;29:660-6.
  • 5 Hayashi Y, Takei H, Nozu S, Tochigi Y, Ichikawa A, Kobayashi N, et al. Analysis of complete response by MRI following neoadjuvant chemotherapy predicts pathological tumour responses differently for molecular subtypes of breast cancer. Oncol Lett 2013;5:83-9.
  • 6 von Minckwitz G, Untch M, Blohmer JU, Costa SD, Eidtmann H, Fasching PA, et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol 2012;30:1796-804.
  • 7 Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple negative Breast cancer: Clinical features and patterns of recurrence. Clin cancer Res 2007;13:4429-34.
  • 8 Ko ES, Lee BH, Kim HA, Noh WC, Kim MS, Lee SA. Triple negative Breast cancer: Correlation between imaging and pathologic findings. Eur Radiol 2010;20:1111-7.
  • 9 Dogan BE, Gonzalez-Angulo AM, Gilcrease M, Dryden MJ, Yang WT. Multi-modality imaging of triple receptors negative tumours with mammography, US and MRI. AJR Am J Roentgenol 2010;194:1160-6.
  • 10 Krizmanich-Conniff KM, Paramagul C, Patterson SK, Helvie MA, Roubidoux MA, Myles JD, et al. Triple receptor negative breast cancer: Imaging and clinical characteristics. AJR Am J Roentgenol 2012;199:458-64.
  • 11 Uematsu T, Kasami M, Yuen S. Triple-negative breast cancers: Correlation between MR imaging and pathological findings. Radiology 2009;250:638-47.
  • 12 Youk JH, Son EJ, Chung J, Kim JA, Kim EK. Triple-negative breast cancers on dynamic contrast enhanced and diffusion weighted MR imaging: Comparison with other breast cancer subtypes. Eur Radiol 2012;22:1724-34.
  • 13 Symmans WF, Peintinger F, Hatzis C, Rajan R, Kuerer H, Valero V, et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol 2007;25:4414-22.
  • 14 Rutman AM, Kuo MD. Radiogenomics: Creating a link between molecular diagnostics and diagnostic imaging. Eur J Radiol 2009;70:232-41.
  • 15 Perou CM, Borrensen-Dale AL. Systems biology and genomics of breast cancer. Cold spring Harb Perspect Biol 2011;3:2.
  • 16 Bae MS, Seo M, Kim KG, Park IA, Moon WK. Quantitative MRI morphology of invasive breast cancer: Correlation with Immuno-histochemical biomarkers and subtypes Acta Radiol 2015;56:269-75.
  • 17 Foulkes WD, Smith IE, Reis-Filho JS. Triple negative Breast cancer. N Eng J Med 2010;363:1938-48.
  • 18 Cheang MC, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK, et al. Basal like Breast cancer defined by five bio-markers has superior prognostic value than triple negative phenotype. Clin cancer Res 2008;14:1368-76.
  • 19 Jones RL, Lakhani SR, Ring AE, Ashley S, Walsh G, Smith IE. Pathological complete response and residual DCIS following neoadjuvant chemotherapy for breast carcinoma. Br J Cancer 2006;94:358-62.
  • 20 De Los Santos JF, Cantor A, Amos KD, Forero A, Golshan M, Horton JK, et al. Magnetic resonance imaging as a predictor of pathologic response in patients treated with neo-adjuvant systemic treatment for operable breast cancer. Translational Breast cancer research Consortium trial 017. Cancer 2013;119:1776-83.
  • 21 Choi HK, Cho N, Moon WK, Im Sa, Han W, Noh DY. Magnetic resonance imaging evaluation of residual ductal carcinoma in situ following preoperative chemotherapy in breast cancer patients. Eur J Radiol 2012;81:737-43.
  • 22 Hylton N, Blume J, Gatsonis C, Gomez R, Bernreuter W, Pisano E, et al. ACRIN 6657/ISPY Trial team. Locally advanced breast cancer: MRI imaging for predicting response to neoadjuvant chemotherapy. Radiology 2012;263:663-72.