CC BY-NC-ND 4.0 · Indian J Radiol Imaging 2014; 24(03): 237-248
DOI: 10.4103/0971-3026.137028
Recent Advances in MSK

Imaging of articular cartilage

Bhawan K Paunipagar
Department of Imaging Sciences, Global Hospitals, Mumbai, India
,
DD Rasalkar
Department of Radiology, Kokilaben Dhirubhai Ambani Hospital, Mumbai, India
› Author Affiliations

Abstract

We tried to review the role of magnetic resonance imaging (MRI) in understanding microscopic and morphologic structure of the articular cartilage. The optimal protocols and available spin-echo sequences in present day practice are reviewed in context of common pathologies of articular cartilage. The future trends of articular cartilage imaging have been discussed with their appropriateness. In diarthrodial joints of the body, articular cartilage is functionally very important. It is frequently exposed to trauma, degeneration, and repetitive wear and tear. MRI has played a vital role in evaluation of articular cartilage. With the availability of advanced repair surgeries for cartilage lesions, there has been an increased demand for improved cartilage imaging techniques. Recent advances in imaging strategies for native and postoperative articular cartilage open up an entirely new approach in management of cartilage-related pathologies.



Publication History

Article published online:
02 August 2021

© 2014. Indian Radiological Association. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • References

  • 1 Buckwalter JA, Mankin HJ. Articular cartilage: Tissue design and chondrocyte-matrix interactions. Instr Course Lect 1998;47:477-86.
  • 2 Lehner KB, Rechl HP, Gmeinwieser JK, Heuck AF, Lukas HP, Kohl HP. Structure, function, and degeneration of 
bovine hyaline cartilage: Assessment with MR imaging in vitro. Radiology 1989;170:495-9.
  • 3 Rubenstein JD, Kim JK, Morova-Protzner I, Stanchev PL, Henkelman RM. Effects of collagen orientation on MR imaging characteristics of bovine articular cartilage. Radiology 1993;188:219-26.
  • 4 Akeson WH, Amiel D, Gershuni DH. Articular cartilage physiology and metabolism. In: Resnick D, editor. Diagnosis of bone and joint disorders. 3 rd ed. Philadelphia, PA: Saunders; 1995. p. 769-90.
  • 5 Gray ML, Burstein D, Lesperance LM, Gehrke L. Magnetization transfer in cartilage and its constit- uent macromolecules. Magn Reson Med 1995;34:319-25.
  • 6 Mosher TJ, Dardzinski BJ, Smith MB. Human articular cartilage: Influence of aging and early symptomatic degeneration on the spatial variation of T2-preliminary findings at 3T. Radiology 2000;214:259-66.
  • 7 Bredella MA, Tirman PF, Peterfy CG, Zarlingo M, Feller JF, Bost FW, et al. Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: Comparison with arthroscopy in 130 patients. AJR Am J Roentgenol 1999;172:1073-80.
  • 8 Vallotton JA, Meuli RA, Leyvraz PF, Landry M. Comparison between magnetic resonance imaging and arthroscopy in the diagnosis of patellar cartilage lesions: A prospective study. Knee Surg Sports Traumatol Arthrosc 1995;3:157-62.
  • 9 Potter HG, Linklater JM, Allen AA, Hannafin JA, Haas SB. Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am 1998;80:1276-84.
  • 10 Loeuille D, Olivier P, Mainard D, Gillet P, Netter P, Blum A. Review: Magnetic resonance imaging of normal and osteoarthritic cartilage. Arthritis Rheum 1998;41:963-75.
  • 11 Totterman S, Weiss SL, Szumowski J, Katzberg RW, Hornak JP, Proskin HM, et al. MR fat suppression technique in the evaluation of normal structures of the knee. J Comput Assist Tomogr 1989;13:473-9.
  • 12 Chandnani VP, Ho C, Chu P, Trudell D, Resnick D. Knee hyaline articular cartilage evaluated with MR imaging: A cadaveric study involving multiple imaging sequences and intraarticular injection of gadolinium and saline solution. Radiology 1991;178:557-61.
  • 13 Gold GE, Chen CA, Koo S, Hargreaves BA, Bangerter NK. Recent advances in the articular cartilage. AJR Am J Roentgenol 2009;193:628-38.
  • 14 Lang P, Zhao L, Zou K, Winalski C, Warfield S, Jolesz FA. Cartilage imaging at 3.0T: Comparison of standard 3D SPGR with 3D spectral spatial SPGR and 3D FSE sequences. Presented at 89 th Scientific Assembly and Annual Meeting of the Radiological Society of North America, Chicago, IL; 2003.
  • 15 Recht MP, Piraino DW, Paletta GA, Schils JP, Belhobek GH. Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities. Radiology 1996;198:209-12.
  • 16 Cicuttini F, Forbes A, Asbeutah A, Morris K, Stuckey S. Comparison and reproducibility of fast and conventional spoiled gradient-echo magnetic resonance sequences in the determination of knee cartilage volume. J Orthop Res 2000;18:580-4.
  • 17 Busse RF, Brau AC, Vu A, Michelich CR, Bayram E, Kijowski R, et al. Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo. Magn Reson Med 2008;60:640-9.
  • 18 Busse RF, Hariharan H, Vu A, Brittain JH. Fast spin echo sequences with very long echo trains: Design of variable refocusing flip angle schedules and generation of clinical T2 contrast. Magn Reson Med 2006;55:1030-7.
  • 19 Disler DG, McCauley TR, Kelman CG, Fuchs MD, Ratner LM, Wirth CR, et al. Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: Comparison with standard MR imaging and arthroscopy. AJR Am J Roentgenol 1996;167:127-32.
  • 20 Disler DG, McCauley TR, Wirth CR, Fuchs MD. Detection of knee hyaline cartilage defects using fat-suppressed three-dimensional spoiled gradient- echo MR imaging: Comparison with standard MR imaging and correlation with arthroscopy. AJR Am J Roentgenol 1995;165:377-82.
  • 21 Recht MP, Piraino DW, Paletta GA, Schils JP, Belhobek GH. Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoralar- ticular cartilage abnormalities. Radiology 1996;198:209-12.
  • 22 Disler DG, McCauley TR, Kelman CG, Fuchs MD, Ratner LM, Wirth CR, et al. Fat-suppressed three-dimensional spoiled gradi- ent-echo MR imaging of hyaline cartilage defects in the knee: Comparison with standard MR imaging and arthroscopy. AJR Am J Roentgenol 1996;167:127-32.
  • 23 Eckstein F, Stammberger T, Priebsch J, Englmeier KH, Reiser M. Effect of gradient and section orientation on quantitative analysis of knee joint cartilage. J Magn Reson Imaging 2000;11:161-7.
  • 24 Alparslan L, Winalski CS, Boutin RD, Minas T. Postoperative magnetic resonance imaging of articular cartilage repair. Semin Musculoskel Radiol 2001;5:345-63.
  • 25 Alparslan L, Minas T, Winalski CS. Magnetic resonance imaging of autologous chondrocyte implantation. Semin Ultrasound CT MR 2001;22:341-51.
  • 26 Kramer J, Recht MP, Imhof H, Stiglbauer R, Engel A. Postcontrast MR arthrography in assessment of cartilage lesions. J Comput Assist Tomogr 1994;18:218-24.
  • 27 Dalla Palma L, Cova M, Pozzi-Mucelli RS. MRI appearance of the articular cartilage in the knee according to age. J Belge Radiol 1997;80:17-20.
  • 28 Link TM, Steinbach LS, Ghosh S, Ries M, Lu Y, Lane N, et al. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology 2003;226:373-81.
  • 29 Gold GE, Hargreaves BA, Stevens KJ, Beaulieu CF. Advanced magnetic resonance imaging of articular cartilage. Orthop Clin North Am 2006;37:331-47, vi.
  • 30 Woertler K, Rummeny EJ, Settles M. A fast high- resolution multislice T1-weighted turbo spin-echo (TSE) sequence with a DRIVen equilibrium (DRIVE) pulse for native arthrographic contrast. AJR Am J Roentgenol 2005;185:1468-70.
  • 31 Mlynarik V, Sulzbacher I, Bittsansky M, Fuiko R, Trattnig S. Investigation of apparent diffusion constant as an indicator of early degenerative disease in articular cartilage. J Magn Reson Imaging 2003;17:440-4.
  • 32 Freeman R. Magnetic resonance in chemistry and medicine. 1 st ed. Oxford, UK: Oxford University Press; 2003. p. 280.
  • 33 Mattiello J, Basser PJ, Lebihan D. Analytical expressions for the b- matrix in NMR diffusion imaging and spectroscopy. J Magn Reson Ser A 1994;108:131-41.
  • 34 Miller KL, Hargreaves BA, Gold GE, Pauly JM. Steady-state diffusion-weighted imaging of in vivo knee cartilage. Magn Reson Med 2004;51:394-8.
  • 35 Mamisch TC, Menzel MI, Welsch GH, Bittersohl B, Salomonowitz E, Szomolanyi P, et al. Steady-state diffusion imaging for MR in-vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3 tesla)-preliminary results. Eur J Radiol 2008;65:72-9.
  • 36 Kornaat PR, Reeder SB, Koo S, Brittain JH, Yu H, Andriacchi TP, et al. MR imaging of articular cartilage at 1.5T and 3.0T: Comparison of SPGR and SSFP sequences. Osteoarthritis Cartilage 2005;13:338-44.
  • 37 Mlynarik V, Sulzbacher I, Bittsanskyì M, Fuiko R, Trattnig S. Investigation of apparent diffusion constant as an indicator of early degenerative disease in articular cartilage. J Magn Reson Imaging 2003;17:440-4.
  • 38 Meder R, de Visser SK, Bowden JC, Bostrom T, Pope JM. Diffusion tensor imaging of articular cartilage as a measure of tissue microstructure. Osteoarthritis Cartilage 2006;14:875-81.
  • 39 deVisser SK, Crawford RW, Pope JM. Structural adaptations in compressed articular cartilage measured by diffusion tensor imaging. Osteoarthritis Cartilage 2008;16:83-9.
  • 40 Gold GE, Fuller SE, Hargreaves BA, Stevens KJ, Beaulieu CF. Driven equilibrium magnetic resonance imaging of articular cartilage: Initial clinical experience. J Magn Reson Imaging 2005;21:476-81.
  • 41 Yoshioka H, Alley M, Steines D, Stevens K, Rubesova E, Genovese M, et al. Imaging of the articular cartilage in osteoarthritis of the knee joint: 3D spatial-spectral spoiled gradient-echo vs. fat-suppressed 3D spoiled gradient-echo MR imaging. J Magn Reson Imaging 2003;18:66-71.
  • 42 Disler DG, Peters TL, Muscoreil SJ, Ratner LM, Wagle WA, Cousins JP, et al. Fat-suppressed spoiled GRASS imaging of knee hyaline cartilage: Technique optimization and comparison with conventional MR imaging. AJR Am J Roentgenol 1994;163:887-92.
  • 43 Gold GE, Hargreaves BA, Vasanawala SS, Webb JD, Shimakawa AS, Brittain JH, et al. Articular cartilage of the knee: Evaluation with fluctuating equilibrium MR imaging-initial experience in healthy volunteers. Radiology 2006;238:712-8.
  • 44 Duc SR, Koch P, Schmid MR, Horger W, Hodler J, Pfirrmann CW. Diagnosis of articular cartilage abnormalities of the knee: Prospective clinical evaluation of a 3D water-excitation true FISP se
quence. Radiology 2007;243:475-82.
  • 45 Burstein D, Gray ML. Is MRI fulfilling its promise for molecular imaging of cartilage in arthritis? Osteoarthritis Cartilage 2006;14:1087-90.
  • 46 Duc SR, Pfirrmann CW, Koch PP, Zanetti M, Hodler J. Internal knee derangement assessed with 3-minute three-dimensional isovoxel true FISP MR sequence: preliminary study. Radiology 2008;246:526-35.
  • 47 Levitt M. Spin dynamics: Basics of nuclear magnetic resonance. 2 nd ed. New York, NY: Wiley; 2008. P. 740.
  • 48 Nissi MJ, Rieppo J, Toyras J, Laasanen MS, Kiviranta I, Nieminen MT, et al. Estimation of mechanical properties of articular cartilage with MRI-dGEMRIC, T2 and T1 imaging in different species with variable stages of matu- ration. Osteoarthritis Cartilage 2007;15:1141-8.
  • 49 Burstein D, Gray ML, Hartman AL, Gipe R, Foy BD. Diffusion of small solutes in cartilage as measured by nuclear magnetic resonance (NMR) spectroscopy and imaging. J Orthop Res 1993;11:465-78.
  • 50 Poon CS, Henkelman RM. Practical T2 quantitation for clinical applications. J Magn Reson Imaging 1992;2:541-53.
  • 51 Li X, Han ET, Ma CB, Link TM, Newitt DC, Majumdar S. In vivo 3T spiral imaging based multi-slice T (1rho) mapping of knee cartilage in osteoarthritis. Magn Reson Med 2005;54:929-36.
  • 52 Wheaton AJ, Borthakur A, Kneeland JB, Regatte RR, Akella SV, Reddy R. In vivo quantification of T1rho using a multislice spin-lock pulse sequence. Magn Reson Med 2004;52:1453-8.
  • 53 Wheaton AJ, Casey FL, Gougoutas AJ, Dodge GR, Borthakur A, Lonner JH, et al. Correlation of T1rho with fixed charge density in cartilage. J Magn Reson Imaging 2004;20:519-25.
  • 54 Regatte RR, Akella SV, Lonner JH, Kneeland JB, Reddy R. T1rho relaxation mapping in human osteoarthritis (OA) cartilage: Comparison of T1rho with T2. J Magn Reson Imaging 2006;23:547-53.
  • 55 Bashir A, Gray ML, Boutin RD, Burstein D. Glycosaminoglycan in articular cartilage: In vivo assessment with delayed Gd (DTPA)(2) enhanced MR imaging. Radiology 1997;205:551-8.
  • 56 Mlynarik V, Sulzbacher I, Bittsansky M, Fuiko R, Trattnig S. Investigation of apparent diffusion constant as an indicator of early degenerative disease in articular cartilage. J Magn Reson Imaging 2003;17:440-4.
  • 57 Hancu I, Boada FE, Shen GX. Three-dimensional triple-quantum-filtered (23) Na imaging of in vivo human brain. Magn Reson Med 1999;42:1146-54.
  • 58 Takahashi M, Uematsu H, Hatabu H. MR imaging at high magnetic fields. Eur J Radiol 2003;46:45-52.
  • 59 Katta J, Jin Z, Ingham E, Fisher J. Biotribology of articular cartilage: A review of the recent advances. Med Eng Phys 2008;30:1349-63.
  • 60 Gold GE, Hargraeves BA, Reeder SB, Vasanawala SS, Beaulieu CF, Controversies in protocol selection in the imaging of articular cartilage. Semin Musculoskelet Radiol 2005;9:161-72.