CC BY-NC-ND 4.0 · Indian J Radiol Imaging 2014; 24(01): 22-36
DOI: 10.4103/0971-3026.130688
fMRI-MINI SYMPOSIA

Clinical utility of BOLD fMRI in preoperative work-up of epilepsy

Karthik Ganesan
Department of 3T fMRI, SRL Diagnostics and Jankharia Imaging, Mumbai, Maharashtra, India
,
Meher Ursekar
Department of 3T fMRI, SRL Diagnostics and Jankharia Imaging, Mumbai, Maharashtra, India
› Institutsangaben

Abstract

Surgical techniques have emerged as a viable therapeutic option in patients with drug refractory epilepsy. Pre-surgical evaluation of epilepsy requires a comprehensive, multiparametric, and multimodal approach for precise localization of the epileptogenic focus. Various non-invasive techniques are available at the disposal of the treating physician to detect the epileptogenic focus, which include electroencephalography (EEG), video-EEG, magnetic resonance imaging (MRI), functional MRI including blood oxygen level dependent (BOLD) techniques, single photon emission tomography (SPECT), and 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET). Currently, non-invasive high-resolution MR imaging techniques play pivotal roles in the preoperative detection of the seizure focus, and represent the foundation for successful epilepsy surgery. BOLD functional magnetic resonance imaging (fMRI) maps allow for precise localization of the eloquent cortex in relation to the seizure focus. This review article focuses on the clinical utility of BOLD (fMRI) in the pre-surgical work-up of epilepsy patients.



Publikationsverlauf

Artikel online veröffentlicht:
02. August 2021

© 2014. Indian Radiological Association. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • References

  • 1 Bell GS, Sander JW. The epidemiology of epilepsy: The size of the problem. Seizure 2001;16:165-70.
  • 2 Sander JW. The epidemiology of epilepsy revisited. Curr Opin Neurol 2003;16:165-70.
  • 3 Bernal B, Altman N. Evidence-based medicine: Neuroimaging of seizures. Neuroimaging Clin N Am 2003;13:211-24.
  • 4 Kwan P, Brodie M. Early identification of refractory epilepsy. N Engl J Med 2000;342:314-9.
  • 5 Arroyo S. Evaluation of drug-resistant epilepsy. Rev Neurol 2000;30:881-9.
  • 6 King MA, Newton MR, Jackson GD, Fitt GJ, Mitchell LA, Silvapulle MJ et al. Epileptology of the first-seizure presentation: A clinical, electro- encephalographic, and magnetic resonance imaging study of 300 consecutive patients. Lancet 1998;352:1007-11.
  • 7 Logothetis NK. The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci 2003;23:3963-71.
  • 8 Corsellis JA. The neuropathology of temporal lobe epilepsy. Mod Trends Neurol 1970;5:254-70.
  • 9 Jensen I, Klinken L. Temporal lobe epilepsy and neuropathology. Histological findings in resected temporal lobes correlated to surgical results and clinical aspects. Acta Neurol Scand 1976;54:391-414.
  • 10 Armstrong DD. The neuropathology of temporal lobe epilepsy. J Neuropathol Exp Neurol 1993;52:433-43. Cross Reference
  • 11 Van Paesschen W, Duncan JS, Stevens JM, Connelly A. Etiology and early prognosis of newly diagnosed partial seizures in adults: A quantitative hippocampal MRI study. Neurology 1997;49:753-7.
  • 12 Van Paesschen W, Revesz T, Duncan JS, King MD, Connelly A. Quantitative neuropathology and quantitative magnetic resonance imaging of the hippocampus in temporal lobe epilepsy. Ann Neurol 1997;42:756-66.
  • 13 Taylor DC, Falconer MA, Bruton CJ, Corsellis JA. Focal dysplasia of the cerebral cortex in epilepsy. J Neurol Neurosurg Psychiatry 1971;34:369-87.
  • 14 Tassi L, Colombo N, Garbelli R, Francione S, Lo Russo G, Mai R, et al. Focal cortical dysplasia: Neuropathological subtypes, EEG, neuroimaging and surgical outcome. Brain 2002;125:1719-32.
  • 15 Palmini A, Najm I, Avanzini G, Babb T, Guerrini R, Foldvary-Schaefer N, et al. Terminology and classification of the cortical dysplasias. Neurology 2004;62:S2-8.
  • 16 Blumcke I, Thom M, Aronica E, Armstrong DD, Vinters HV, Palmini A, et al. The clinicopathologic spectrum of focal cortical dysplasias: A consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia 2011;52:158-74.
  • 17 Wolf HK, Muller MB, Spanle M, Zentner J, Schramm J, Wiestler OD. Ganglioglioma: A detailed histopathological and immunocytochemical analysis of 61 cases. Acta Neuropathol 1994;88:166-73.
  • 18 Prayson RA, Khajavi K, Comair YG. Cortical architectural abnormalities and MIB1 immunoreactivity in gangliogliomas: A study of 60 patients with intracranial tumors. J Neuropathol Exp Neurol 1995;54:513-20.
  • 19 Friedland R, Bronen R. Magnetic resonance imaging of neoplastic, vascular, and indeterminate substrates. In: Cascino G, Jack CJ, editors. Neuroimaging in epilepsy: Principles and practice. Newton (MA): Butter-worth-Heinemann; 1996. p. 29-50.
  • 20 Wray CD, Blakely TM, Poliachik SL, Poliakov A, McDaniel SS, Novotny EJ et al. Multimodality localization of the sensorimotor cortex in pediatric patients undergoing epilepsy surgery. J Neurosurg Pediatr 2012;10:1-6.
  • 21 Lehericy S, Duffau H, Cornu P, Capelle L, Pidoux B, Carpentier A, et al. Correspondence between functional magnetic resonance imaging somatotopy and individual brain anatomy of the central region: Comparison with intraoperative stimulation in patients with brain tumors. J Neurosurg 2000;92:589-98.
  • 22 Puce A, Constable RT, Luby ML, McCarthy G, Nobre AC, Spencer DD, et al. Functional magnetic resonance imaging of sensory and motor cortex: Comparison with electrophysiological localization. J Neurosurg 1995;83:262-70.
  • 23 Hammeke TA, Yetkin FZ, Mueller WM, Morris GL, Haughton VM, Rao SM, et al. Functional magnetic resonance imaging of somatosensory stimulation. Neurosurgery 1994;35:677-81.
  • 24 Kim SG, Ashe J, Georgopoulos AP, Merkle H, Ellermann JM, Menon RS, et al. Functional imaging of human motor cortex at high magnetic field. J Neurophysiol 1993;69:297-302.
  • 25 Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 1992;89:5675-9.
  • 26 Rao SM, Binder JR, Bandettini PA, Hammeke TA, Yetkin YZ, Jesmanowicz A, et al. Functional magnetic resonance imaging of complex human movements. Neurology 1993;43:2311-8.
  • 27 Binder JR, Rao SM, Hammeke TA, Morris JL, Mueller WM, Fischer M, et al. Determination of language dominance using functional MRI: A comparison with the Wada test. Neurology 1996;46:978-84.
  • 28 Hertz-Pannier L, Galliard WD, Mott SH, Cuenoid CA, Bookheimer SY, Weinstein S, et al. Noninvasive assessment of language dominance in children and adolescents with functional MRI: A preliminary study. Neurology 1997;48:1003-12.
  • 29 Yuan W, Szaflarski JP, Schmithorst VJ, Schapiro M, Byars AW, Strawsburg RH, et al. FRMI shows atypical language lateralization in pediatric epilepsy patients. Epilepsia 2006;47:593-600.
  • 30 Pujol J, Deus J, Losilla JM, Capdevilla A. Cerebral lateralization of language in normal and left handed people studied by functional MRI. Neurology 1999;52:1038-43.
  • 31 Szaflarski JP, Binder JR, Possing ET, McKeirnan KA, Ward BD, Hammeke TA. Language lateralization in left handed and ambidextrous people. fMRI data. Neurology 2002;59:238-44.
  • 32 Desmond JE, Sum JM, Wagner AD, Demb JB, Shear PK, Glover GH, et al. Functional MRI assessment of language lateralization in Wada-tested patients. Brain 1995;118:1411-9.
  • 33 Benbadis SR, Binder JR, Swanson SJ, Fischer M, Hammeke TA, Morris GL, et al. Is speech arrest during Wada testing a valid method for determining hemispheric representation of language? Brain Lang 1998;65:441-6.
  • 34 Yetkin FZ, Swanson S, Fischer M, Akansel G, Morris G, Mueller W, et al. Functional MR of frontal lobe activation: Comparison with Wada language results. Am J Neuroradiol 1998;19:1095-8.
  • 35 Worthington C, Vincent DJ, Bryant AE, Roberts DR, Vera CL, Ross DA, et al. Comparison of functional magnetic resonance imaging for language localization and intracarotid speech amytal testing in presurgical evaluation for intractable epilepsy. Preliminary results. Stereotact Funct Neurosurg 1997;69:197-201.
  • 36 Moddel G, Linewaever T, Schuele SU, Reinholz J, Loddenkemper T. Atypical language lateralization in epilepsy patients. Epilepsia 2009;50:1505-16.
  • 37 Rasmussen T, Milner B. The role of early left-brain injury in determining lateralization of cerebral speech functions. Ann NY Acad Sci 1977;299:355-69.
  • 38 Wilke M, Pieper T, Lindner K, Dushe T, Holthausen H, Krageloh-Mann I. Why one task is not enough: Functional MRI for atypical language organization in two children. Eur J Paediatr Neurol 2010;14:474-8.
  • 39 Weber B, Wellmer J, Reuber M, Mormann F, Weis S, Urbach H, et al. Left hippocampal pathology is associated with atypical language lateralization in patients with focal epilepsy. Brain 2006;129:346-51.
  • 40 Davies K, Bell B, Bush A, Hermann B, Dohan FC, Japp AS. Naming decline after left anterior temporal lobectomy correlates with pathological status of resected hippocampus. Epilepsia 1998;39:407-19.
  • 41 Hamberger MJ, Seidel WT, Goodman RR, Williams A, Perrine J, Devinsky O, et al. Evidence of cortical reorganization in patients with hippocampal sclerosis. Brain 2007;130:2942-50.
  • 42 Redcay E, Haist F, Courchesne E. Functional neuroimaging of speech perception during a pivotal period in language acquisition. Dev Sci 2008;11:237-52.
  • 43 Brown TT, Lugar HM, Coalson RS, Miezin FM, Petersen SE, Schlaggar BL. Developmental changes in human cerebral functional organization for word generation. Cereb Cortex 2005;15:275-90.
  • 44 Schapiro MB, Schmithorst VJ, Wilke M, Byars AW, Strawsburg RH, Holland SK. BOLD fMRI signal increases with age in selected brain regions in children. Neuroreport 2004;15:2575-8.
  • 45 Weber B, Kugler F, Elger CE. Comparison of implicit memory encoding paradigms for the activation of mediotemporal structures. Epilepsy Behav 2007;10:442-8.
  • 46 Golby AJ, Poldrack RA, Brewer JB, Spencer D, Desmond JE, Aron AP, et al. Material-specific lateralization in the medial temporal lobe and prefrontal cortex during memory encoding. Brain 2001;124:1841-54.
  • 47 Powell HW, Koepp MJ, Symms MS. Material-specific lateralization of memory encoding in the medial temporal lobe: Blocked versus event-related design. Neuroimage 2005;27:231-9.
  • 48 Detre JA, Maccotta L, King D, Alsop DC, Glosser D, D′Esposito M, et al. Functional MRI lateralization of memory in temporal lobe epilepsy. Neurology 1998;50:926-32.
  • 49 Dupont S, Duron E, Samson S. Functional MR imaging or wada test: Which is the better predictor of individual postoperative memory outcome. Radiology 2010;255:128-34.