J Am Acad Audiol 2011; 22(06): 375-386
DOI: 10.3766/jaaa.22.6.6
Articles
American Academy of Audiology. All rights reserved. (2011) American Academy of Audiology

Adaptation of the BKB-SIN Test for Use as a Pediatric Aided Outcome Measure

Stella L. Ng
,
Christine N. Meston
,
Susan D. Scollie
,
Richard C. Seewald
Further Information

Publication History

Publication Date:
06 August 2020 (online)

Background: There is a need for objective pediatric hearing aid outcome measurement and thus a need for the evaluation of outcome measures. We explored a commercially available pediatric sentence-in-noise measure adapted for use as an aided outcome measure.

Purpose: The purposes of the current study were (1) to administer an adapted BKB-SIN (Bamford-Kowal-Bench Speech-in-Noise test) to adults and children who have normal hearing and children who use hearing aids and (2) to evaluate the utility of this adapted BKB-SIN as an aided, within-subjects outcome measure for amplification strategies.

Research Design: We used a mixed within and between groups design to evaluate speech recognition in noise for the three groups of participants. The children who use hearing aids were tested under the omnidirectional, directional, and digital noise reduction (DNR) conditions. Results from each group were compared to each other, and we compared results of each aided condition for the children who use hearing aids to evaluate the test utility as an aided outcome measure.

Study Sample: The study sample consisted of 14 adults with normal hearing (aged 22–28 yr) and 15 children with normal hearing (aged 6–18 yr), recruited through word of mouth, and 14 children who use hearing aids (aged 9–16 yr) recruited from local audiology clinics.

Data Collection and Analysis: List pairs of the BKB-SIN test were presented at 50 dB HL as follows: four list pairs to each participant with normal hearing, four list pairs in the omnidirectional condition, and two list pairs in the directional and DNR conditions. Children who use hearing aids were fitted bilaterally with laboratory devices and completed the BKB-SIN test aided. Data were plotted as mean percent of key words correct at each signal-to-noise ratio (SNR). Further, we conducted an analysis of variance for group differences and within-groups for the three aided conditions.

Results: Adult participants outperformed children with normal hearing, who outperformed the children who use hearing aids. SNR-50 (signal-to-noise ratio at which listener can obtain a speech recognition score of 50% correct) scores demonstrated reliability of the adapted test implementation. The BKB-SIN test measured significant differences in performance for omnidirectional versus directional microphone conditions but not between omnidirectional and DNR conditions.

Conclusions: We conclude that the adapted implementation of the BKB-SIN test can be administered reliably and feasibly. Further study is warranted to develop norms for the adapted implementation as well as to determine if an adapted implementation can be sensitive to age effects. Until such norms are developed, clinicians should refrain from comparing results from the adapted test to the test manual norms and should instead use the adapted implementation as a within-subject measure.