Vet Comp Orthop Traumatol 2017; 30(05): 351-356
DOI: 10.3415/VCOT-16-09-0130
Original Research
Schattauer GmbH

Effects of nandrolone decanoate on time to consolidation of bone defects resulting from osteotomy for tibial tuberosity advancement

Danilo R. C. Marques
1   UFPR – Universidade Federal do Parana, Medicina Veterinária, Curitiba, Parana, Brazil.
,
José F. Ibañez
1   UFPR – Universidade Federal do Parana, Medicina Veterinária, Curitiba, Parana, Brazil.
,
Itallo B. Freitas
1   UFPR – Universidade Federal do Parana, Medicina Veterinária, Curitiba, Parana, Brazil.
,
Ana C. Hespanha
1   UFPR – Universidade Federal do Parana, Medicina Veterinária, Curitiba, Parana, Brazil.
,
Juliana F. Monteiro
1   UFPR – Universidade Federal do Parana, Medicina Veterinária, Curitiba, Parana, Brazil.
,
Mayara Eggert
1   UFPR – Universidade Federal do Parana, Medicina Veterinária, Curitiba, Parana, Brazil.
,
Amanda Becker
1   UFPR – Universidade Federal do Parana, Medicina Veterinária, Curitiba, Parana, Brazil.
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 09. September 2016

Accepted: 12. Juni 2017

Publikationsdatum:
23. Dezember 2017 (online)

Summary

Study design: Experimental study.

Objective: The aim of this study was to evaluate the effect of nandrolone decanoate (ND) on the time taken for bone consolidation in dogs undergoing tibial tuberosity advancement surgery (TTA).

Materials and methods: Seventeen dogs that underwent TTA surgery were randomly divided into two groups: group C (TTA; 9 stifles), and group TTA+ND (TTA and systemic administration of ND; 8 stifles). Three observers (two radiologists and an orthopaedic surgeon), assessed bone consolidation by visual inspection of serial radiographs at intervals of 21 days following surgery.

Results: There were no differences in median weight and age between groups, nor between the medians of the variables right and left stifle. Only weight and age values were normally distributed. The other variables, right and left stifle and time to consolidation, showed non-normal distribution. Meniscal injury was present in all animals in group C and all animals in group TTA+ND. There was a significant difference between time to consolidation in groups C and TTA+ND (p <0.05). One animal in the group TTA+ND showed increased libido. Kappa agreement among observers on radiographs was 0.87.

Conclusion: Administration of ND reduces time to bone consolidation in dogs undergoing TTA.

Supplementary Material for this article is available online at https://doi.org/10.3415/VCOT-16-09-0130

 
  • References

  • 1 Rozen N, Lewinson D, Bick T. et al. Role of bone regeneration and turnover modulators in control of fracture. Crit Rev Eukaryotic Gene Expr 2007; 17: 197-213.
  • 2 Brinker WO, Piermattei DL, Flo GL. Fractures: classification, diagnosis and treatment, in Handbook of Small Animal Orthopedics and Fracture Treatment. Philadelphia, WB, Saunders: 1990: 3-58.
  • 3 Aithal HP, Kinjavdekar P, Amarpal Pawde AM. et al. Effects of Nandrolone and TGF-beta1 in growing rabbits with osteopenia induced by over-supplementation of calcium and vitamin D3. Vet Res Commun 2009; 33: 331-343.
  • 4 Abedi G, Alizadeh R, Asghari A. et al. Radiographic evaluation of androgen on tibial bone defect healing in rabbit. Euro J Exp Bio (Pelagia Research Library) 2012; 2: 1315–1319 Available at http://www.imed pub.com/articles/radiographic-evaluation-of-androgen-on-tibial-bone-defect-healing-in-rabbit.pdf
  • 5 Ahmad F, Yunus SM, Asghar A. et al. Influence of anabolic steroid on tibial fracture healing in rabbits – a study on experimental model. J Clin Diagn Res 2013; 7: 93-96.
  • 6 Zamarian TP. Avaliação do processo de reparo em falhas ósseas induzidas em tibias de coelhos tratados com decanoato de nandrolona [Evaluation of the repair process in induced bone defects in rabbit tibia treated with nandrolone decanoate]. Masters [Thesis]. Curitiba – PR, Brazil: Universidade Federal do Paraná 2014
  • 7 Notelovitz M. Androgen effects on bone and muscle. Fertil Steril 2002; 77: 34-41.
  • 8 Gao W, Bohl CE, Dalon JT. Chemistry and structural biology of androgen receptor. Chem Rev 2005; 105: 3352-3370.
  • 9 Kicman AT. Pharmacology of anabolic steroids. Br J Pharmacol 2008; 154: 502-521.
  • 10 Ghizoni MF, Bertelli JA, Grala CG. et al. The anabolic steroid nandrolone enhances motor and sensory functional recovery in rat median nerve repair with long interpositional nerve grafts. Neurorehabil Neural Repair 2013; 27: 269-276.
  • 11 Kousteni S, Almeida M, Han L. et al. Induction of osteoblastic differentiation by selective activation of kinase-mediated actions of estrogen receptor. Mol Cell Biol 2007; 27: 1516-1530.
  • 12 Cunha TS, Cunha NS, Moura MJCS. et al. Esteróides anabólicos androgênicos e sua relação com a prática desportiva [Anabolic androgenic steroids and their relationship to sports]. Rev Bras Cienc Farm 2004; 40: 165-179.
  • 13 Shahidi NT. A review of the chemistry, biological action, and clinical applications of anabolic-androgenic steroids. Clin Ther 2001; 23: 1355-1390.
  • 14 Lemos MP, Nakaoka VYES, Kashiwabara TGB. Osteoporose no idoso e fraturas de quadril [Osteoporosis in the elderly and hip fractures]. Braz J Surg Clin Res 2013; 4: 45-48.
  • 15 Cardozo CP, Qin W, Peng Y. et al. Nandrolone slows hindlimb bone loss in a rat model of bone loss due to denervation. Ann N Y Acad Sci 2010; 2: 303-306.
  • 16 Fusatto EDL. Efeito da nandrolona em músculo esquelético imobilizado [Effect of nandrolone on immobilized skeletal muscle]. Saúde em Revista 2010; 13: 77-79.
  • 17 Tidermark J, Ponzer S, Carlsson P. Effects of protein-rich supplementation and nandrolone in lean elderly womem with femoral neck fratures. Clinical Nutrition 2004; 23: 587-596.
  • 18 Beriashvili GK, Menabde GK, Chikhladze RT. [Morphological peculiarities of consolidation of experimental mandible fractures by osteosynthesis using kollapan and retabolil] [article in Russian]. Georgian Med News 2006; 136: 105-108.
  • 19 Tengstrand B, Cederholm T, Söderqvist A. et al. Effects of protein-rich supplementation and nandro-lone on bone tissue after a hip fracture. Clinical Nutrition 2007; 26: 460-465.
  • 20 Ibañez JF, Silva TS, Pontes DR. Uso de decanoato de nandrolona (Deca-durabolin) como estimulante da proliferação óssea em cães com consolidação retardada [Use of nandrolone decanoate (Deca-durabolin) as a bone marrow stimulant in dogs with delayed consolidation]. Braz J Vet Res Anim Sci 2003; 40: 229-230.
  • 21 Frisoli-Junior A. Osteoporose no idoso e fraturas de quadril [Osteoporosis in the elderly and hip fractures]. In: Borges DR: Atualização terapêutica São Paulo: Artes Médicas [São Paulo: Medical Arts]. 2012: 535-536.
  • 22 Hedström M, Sjöberg K, Brosjö E. et al. Positive effects of anabolic steroid, vitamin D and calcium on muscle mass, bone mineral density and clinical function after a hip fracture. A randomised study of 63 women. J Bone Joint Surg Am 2002; 84: 497-503.
  • 23 Kaplanskiä AS, Durnova GN. Role of insufficient hormone production in development of osteopenia in consequence of physical loads defficiency. Aviakosmicheskaya Ekologicheskaya Meditsina 2007; 41: 13-17.
  • 24 Mota FDC, Rebellato KR, Moraes AC. et al. Análise das propriedades mecânicas da tíbia de ratos submetida à osteotomia por escareação e tratada com decanoato de nandrolona [Analysis of the mechanical properties of the tibia of rats submitted to osteotomy by scaling and treated with nandrolone decanoate]. Jornal Brazileiro de Ciencia Animal [Brazilian Journal of Animal Science] 2010; 3: 57-59.
  • 25 Schalch TD, Ferrari RAM, Souza NHC. et al. Effect of steroid nandrolone decanoate on osteoblast-like cells. J Med Sci Tech 2013; 54: 107-111.
  • 26 Fernández-Tresguerres-Hernández-Gil I, AloberaGracia MA, Del-Canto-Pigarrón M. et al. Physiological bases of bone regeneration II. The remodeling process. Med Oral Patol Oral Cir Bucal 2006; 11: 151-157.
  • 27 Senos R. Uso de decanoato de nandrolona na nãounião de fratura induzida em fêmur de rato: aspectos morfológicos [Use of nandrolone decanoate in experimental nonunion of the femur of the rat: morphological aspects]. DVM [Dissertation]. São Paulo, Brazil: Universidade de São Paulo 2014
  • 28 Silveira FR. Comparação da utilização exclusiva de osso esponjoso autólogo com a utilização mista de osso esponjoso autólogo e fibrina rica em plaquetas e leucócitos (L-PRF) na cicatrização do espaço criado pela osteotomia realizada na técnica de tibial tuberosity advancement (TTA) [Comparison of the esclusive use of autologous cancellous bone with the mixed use of autologous cancellous bone and leucocyte- and platelet-rich fibrin (L- PRF) as grafting materials for the osteotomy in tibial tuberosity advancement]. Masters [Thesis]. Lisboa, Portugal: Universidade de Lisboa 2013
  • 29 Lafaver S, Miller NA, Stubbs WP. et al. Tibial tuberosity advancement for stabilization of the canine cranial cruciate ligament deficient stifle joint: surgical technique, early results, and complication in 101 dogs. Vet Surg 2007; 36: 573-586.
  • 30 Boudrieau RJ. Letter to the Editor: Bone grafting and tibial tuberosity advancement. Vet Surg 2011; 40: 641-643.
  • 31 Bisgard SK, Barnhart MD, Shiroma JT. et al. The effect of cancellous autograft and novel plate design on radiographic healing and postoperative complications in tibial tuberosity advancement for cranial cruciate deficient canine stifles. Vet Surg 2011; 40: 402-407.
  • 32 Guerrero TG, Makara MA, Katiofsky K. et al. Comparison of healing of the osteotomy gap after tibial tuberosity advancement with and without use of an autogenous cancellous bone graft. Vet Surg 2011; 40: 27-33.
  • 33 Lande RG, Worth AJ, Guerrero TG. et al. Comparison between a novel bovine xenoimplant and autogenous cancellous bone graft in tibial tuberosity advancement. Vet Surg 2012; 41: 559-567.
  • 34 Hoffmann DE, Miller JM, Ober CP. et al. Tibial tuberosity advancement in 65 canine stifles. Vet Comp Orthop Traumatol 2006; 19: 219-227.
  • 35 Dantas BL, Sul R, Parkin T. et al. Incidence of complications associated with tibial tuberosity advancement in Boxer dogs. Vet Comp Orthop Traumatol 2016; 29: 39-45.
  • 36 Griffon D. Fracture healing. In Johnson AJ, Houlton JEF, Vannini R. editors AO Principles of Fracture Management in the Dog and Cat. Davos: AO Publishing; 2005: 73-97.
  • 37 Sinnesael M, Claessens F, Laurent M. et al. Androgen receptor (AR) in osteocytes is important for the maintenance of male skeletal integrity: evidence from targeted AR disruption in mouse osteocytes. J Bone and Miner Res 2012; 27: 2535-2543.
  • 38 Soares MCR, Abreu IC, Assenço F. et al. Decanoato de nandrolona aumenta a parede ventricular esquerda, mas atenua o aumento da cabidade provocada pelo treinamento de natação em ratos [Nandrolone decanoate increases the left ventricular wall but attenuates the cavity increase caused by swimming training in rats]. Rev Bras Med Esportiva 2011; 17: 420-424.
  • 39 Yun S, Lim J, Mizanur R Md. et al. Effect of nandro-lone decanoate on disuse muscle atrophy and bone healing in dogs. J Vet Clin 2005; 22: 336-341.
  • 40 Kouvelas D, Pourzitaki C, Papazisis G. et al. Nandro-lone abuse decreases anxiety and impairs in rats via central androgenic receptors. Int J Neuropsychopharmacol 2008; 11: 925-934.
  • 41 Pandey SK. Influence of certain hormones on histo-logical and biochemical changes in callus formation in dogs. Indian J Animal Sci 1985; 55: 527-531.