Vet Comp Orthop Traumatol 2014; 27(01): 01-07
DOI: 10.3415/VCOT-13-04-0054
Original Research
Schattauer GmbH

Fast presurgical magnetic resonance imaging of meniscal tears and concurrent subchondral bone marrow lesions

Study of dogs with naturally occurring cranial cruciate ligament rupture
J. Olive
1   Département des Sciences Cliniques, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
,
M-A. d'Anjou
1   Département des Sciences Cliniques, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
,
J. Cabassu
1   Département des Sciences Cliniques, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
,
N. Chailleux
1   Département des Sciences Cliniques, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
,
L. Blond
1   Département des Sciences Cliniques, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
› Author Affiliations
Further Information

Publication History

Received 28 April 2013

Accepted 14 October 2013

Publication Date:
19 December 2017 (online)

Summary

Meniscal tears and subchondral bone marrow lesions have both been described in dogs with cranial cruciate ligament rupture, but their possible concurrence has not been evaluated. In a population of 14 dogs exhibiting signs of stifle pain with surgically confirmed cranial cruciate ligament rupture, a short presurgical 1.5T magnetic resonance (MR) imaging protocol including dorsal proton density, dorsal T1-weighted gradient recalled echo, and sagittal fat-saturated dual echo sequences was tested to further investigate these features and illustrate meniscal tears. Interobserver agreement for detection of medial meniscal tears (k = 0.83) and bone marrow lesions (k = 0.87) was excellent. Consensus MR reading allowed detection of nine out of 12 surgically confirmed medial meniscal tears and there was no false positive. All dogs had cruciate ligament enthesisrelated bone marrow lesions in the tibia, femur or both bones. Additionally, among the 12 dogs with confirmed medial meniscal tears, subchondral bone marrow lesions were present in the caudomedial (9 dogs) and caudoaxial (11 dogs) regions of the tibial plateau, resulting in odds ratios (13.6, p = 0.12, and 38.3, p = 0.04, respectively) that had large confidence intervals due to the small group size of this study. The other two dogs had neither tibial bone marrow lesions in these locations nor medial meniscal tears. These encouraging preliminary results warrant further investigation using this clinically realistic preoperative MR protocol. As direct diagnosis of meniscal tears remained challenging in dogs even with high-field MR, identification of associated signs such as subchondral bone marrow lesions might indirectly allow suspicion of an otherwise unrecognized meniscal tear.

 
  • References

  • 1 Casale SA, McCarthy RJ. Complications associated with lateral fabellotibial suture surgery for cranial cruciate ligament injury in dogs: 363 cases (1997-2005). J Am Vet Med Assoc 2009; 234: 229-235.
  • 2 Ralphs SC, Whitney WO. Arthroscopic evaluation of menisci in dogs with cranial cruciate ligament injuries: 100 cases (1999-2000). J Am Vet Med Assoc 2002; 221: 1601-1604.
  • 3 Case JB, Hulse D, Kerwin SC. et al. Meniscal injury following initial cranial cruciate ligament stabilization surgery in 26 dogs (29 stifles). Vet Comp Orthop Traumatol 2008; 21: 365-367.
  • 4 Arnault F, Cauvin E, Viguier E. et al. Diagnostic value of ultrasonography to assess stifle lesions in dogs after cranial cruciate ligament rupture: 13 cases. Vet Comp Orthop Traumatol 2009; 22: 479-485.
  • 5 Marino DJ, Loughin CA. Diagnostic imaging of the canine stifle: A review. Vet Surg 2010; 39: 284-295.
  • 6 Flo GL. Meniscal injuries. Vet Clin North Am Small Anim Pract 1993; 23: 831-843.
  • 7 Barrett E, Barr F, Owen M. et al. A retrospective study of the MRI findings in 18 dogs with stifle injuries. J Small Anim Pract 2009; 50: 448-455.
  • 8 Blond L, Thrall DE, Roe SC. et al. Diagnostic accuracy of magnetic resonance imaging for meniscal tears in dogs affected with naturally occurring cranial cruciate ligament rupture. Vet Radiol Ultrasound 2008; 49: 425-431.
  • 9 Böttcher P, Brühschwein A, Winkels P. et al. Value of low-field magnetic resonance imaging in diagnosing meniscal tears in the canine stifle: A prospective study evaluating sensitivity and specificity in naturally occurring cranial cruciate ligament deficiency with arthroscopy as the gold standard. Vet Surg 2010; 39: 296-305.
  • 10 McCartney WT, McGovern F. Use of low-field MRA to presurgically screen for medial meniscus lesions in 30 dogs with cranial cruciate deficient stifles. Vet Rec 2012; 171: 47-47.
  • 11 Böttcher P, Armbrust L, Blond L. et al. Effects of observer on the diagnostic accuracy of low-field MRI for detecting canine meniscal tears. Vet Radiol Ultrasound 2012; 53: 628-635.
  • 12 Martig S, Konar M, Schmokel HG. et al. Low-field MRI and arthroscopy of meniscal lesions in ten dogs with experimentally induced cranial cruciate ligament insufficiency. Vet Radiol Ultrasound 2006; 47: 515-522.
  • 13 Crues JV, Mink J, Levy TL. et al. Meniscal tears of the knee: accuracy of MR imaging. Radiology 1987; 164: 445-448.
  • 14 De Smet AA, Norris MA, Yandow DR. et al. MR diagnosis of meniscal tears of the knee: importance of high signal in the meniscus that extends to the surface. Am J Roentgenol 1993; 161: 101-107.
  • 15 Kaplan PA, Nelson NL, Garvin KL. et al. MR of the knee: the significance of high signal in the meniscus that does not clearly extend to the surface. Am J Roentgenol 1991; 156: 333-336.
  • 16 Zanetti M, Bruder E, Romero J. et al. Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology 2000; 215: 835-840.
  • 17 D'Anjou MA, Troncy E, Moreau M. et al. Temporal assessment of bone marrow lesions on magnetic resonance imaging in a canine model of knee osteoarthritis: impact of sequence selection. Osteoarthritis Cartilage 2008; 16: 1307-1311.
  • 18 Felson DT, Chaisson CE, Hill CL. et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med 2001; 134: 541-549.
  • 19 Felson DT, Niu J, Guermazi A. et al. Correlation of the development of knee pain with enlarging bone marrow lesions on magnetic resonance imaging. Arthritis Rheum 2007; 56: 2986-2992.
  • 20 Zhang Y, Nevitt M, Niu J. et al. Fluctuation of knee pain and changes in bone marrow lesions, effusions, and synovitis on magnetic resonance imaging. Arthritis Rheum 2011; 63: 691-699.
  • 21 Xu L, Hayashi D, Roemer FW. et al. Magnetic resonance imaging of subchondral bone marrow lesions in association with osteoarthritis. Semin Arthr Rheum 2012; 42: 105-118.
  • 22 Sowers MF, Hayes C, Jamadar D. et al. Magnetic resonance-detected subchondral bone marrow and cartilage defect characteristics associated with pain and X-ray-defined knee osteoarthritis. Osteoarthritis Cartilage 2003; 11: 387-393.
  • 23 Hernández-Molina G, Guermazi A, Niu J. et al. Central bone marrow lesions in symptomatic knee osteoarthritis and their relationship to anterior cruciate ligament tears and cartilage loss. Arthritis Rheum 2008; 58: 130-136.
  • 24 Stein V, Li L, Lo G. et al. Pattern of joint damage in persons with knee osteoarthritis and concomitant ACL tears. Rheumatol Int 2011; 32: 1197-1208.
  • 25 Lo GH, Hunter DJ, Nevitt M. et al. Strong association of MRI meniscal derangement and bone marrow lesions in knee osteoarthritis: data from the osteoarthritis initiative. Osteoarthritis Cartilage 2009; 17: 743-747.
  • 26 Martig S, Boisclair J, Konar M. et al. MRI characteristics and histology of bone marrow lesions in dogs with experimentally induced osteoarthritis. Vet Radiol Ultrasound 2007; 48: 105-112.
  • 27 Libicher M, Ivancic M, Hoffmann V. et al. Early changes in experimental osteoarthritis using the Pond-Nuki dog model: technical procedure and initial results of in vivo MR imaging. Eur Radiol 2004; 15: 390-394.
  • 28 Winegardner KR, Scrivani PV, Krotscheck U. et al. Magnetic resonance imaging of subarticular bone marrow lesions in dogs with stifle lameness. Vet Radiol Ultrasound 2007; 48: 312-317.
  • 29 Widmer WR, Buckwalter KA, Braunstein EM. et al. Principles of magnetic resonance imaging and application to the stifle joint in dogs. J Am Vet Med Assoc 1991; 198: 1914-1922.
  • 30 Lahm A, Uhl M, Edlich M. et al. An experimental canine model for subchondral lesions of the knee joint. The Knee 2005; 12: 51-55.
  • 31 Peterfy CG, Guermazi A, Zaim S. et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 2004; 12: 177-190.
  • 32 D'Anjou MA, Moreau M, Troncy E. et al. Osteophytosis, subchondral bone sclerosis, joint effusion and soft tissue thickening in canine experimental stifle osteoarthritis: comparison between 1.5 T magnetic resonance imaging and computed radiography. Vet Surg 2008; 37: 166-177.
  • 33 Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977; 33: 159-174.
  • 34 Gnudi G, Bertoni G. Echographic examination of the stifle joint affected by cranial cruciate ligament rupture in the dog. Vet Radiol Ultrasound 2001; 42: 266-270.
  • 35 Samii VF, Dyce J, Pozzi A. et al. Computed tomographic arthrography of the stifle for detection of cranial and caudal cruciate ligament and meniscal tears in dogs. Vet Radiol Ultrasound 2009; 50: 144-150.
  • 36 Crawford R, Walley G, Bridgman S. et al. Magnetic resonance imaging versus arthroscopy in the diagnosis of knee pathology, concentrating on meniscal lesions and ACL tears: a systematic review. British Med Bull 2007; 84: 5-23.
  • 37 Tuckman GA, Miller WJ, Remo JW. et al. Radial tears of the menisci: MR findings. Am J Roentgenol 1994; 163: 395-400.
  • 38 Mahn MM, Cook JL, Cook CR. et al. Arthroscopic verification of ultrasonographic diagnosis of meniscal pathology in dogs. Vet Surg 2005; 34: 318-323.
  • 39 Oei EHG, Nikken JJ, Verstijnen ACM. et al. MR imaging of the menisci and cruciate ligaments: a systematic review. Radiology 226: 837-848.
  • 40 Peterfy CG, Gold S, Eckstein F. et al. MRI protocols for whole-organ assessment of the knee in osteoarthritis. Osteoarthritis Cartilage 2006; 14: 95-111.
  • 41 Peterfy CG, Schneider E, Nevitt M. The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage 2008; 16: 1433-1441.
  • 42 Conaghan PG, Felson D, Gold S. et al. MRI and non-cartilaginous structures in knee osteoarthritis. Osteoarthritis Cartilage 2006; 14: 87-94.
  • 43 Lee E, Singh T, Bolton G. Axial fat-saturated FSE imaging of knee: appearance of meniscal tears. Skeletal Radiol 2002; 31: 384-395.
  • 44 Tarhan NC, Chung CB, Mohana-Borges AVR. et al. Meniscal tears: role of axial MRI alone and in combination with other imaging planes. Am J Roentgenol 2004; 183: 9-15.
  • 45 Ohishi T, Takahashi M, Abe M. et al. The use of axial reconstructed images from three-dimensional MRI datasets for morphological diagnosis of meniscal tears of the knee. Arch Orthop Trauma Surg 2005; 125: 622-627.
  • 46 Hunter DJ, Zhang Y, Niu J. et al. Increase in bone marrow lesions associated with cartilage loss: a longitudinal magnetic resonance imaging study of knee osteoarthritis. Arthritis Rheum 2006; 54: 1529-1535.
  • 47 Roemer FW, Guermazi A, Javaid MK. et al. Change in MRI-detected subchondral bone marrow lesions is associated with cartilage loss: the MOST Study. A longitudinal multicentre study of knee osteoarthritis. Ann Rheum Dis 2009; 68: 1461-1465.
  • 48 Johnson DL, Bealle DP, Brand JC. et al. The effect of a geographic lateral bone bruise on knee inflammation after acute anterior cruciate ligament rupture. Am J Sports Med 2000; 28: 152-155.
  • 49 Link TM, Steinbach LS, Ghosh S. et al. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology 2003; 226: 373-381.
  • 50 Kornaat PR, Bloem JL, Ceulemans RYT. et al. Osteoarthritis of the knee: association between clinical features and MR imaging findings. Radiology 2006; 239: 811-817.
  • 51 Ruff C, Weingardt JP, Russ PD. et al. MR imaging patterns of displaced meniscus injuries of the knee. Am J Roentgenol 1998; 170: 63-67.
  • 52 Pozzi A, Hildreth BE, Rajala-Schultz PJ. Comparison of arthroscopy and arthrotomy for diagnosis of medial meniscal pathology: An ex vivo study. Vet Surg 2008; 37: 749-755.