Nuklearmedizin 2008; 47(04): 167-174
DOI: 10.3413/nukmed-0153
Original article
Schattauer GmbH

The simplified reference tissue model for SPECT/PET brain receptor studies

Interpretation of its parametersDas vereinfachte Referenzgewebemodell für SPECT/PETNeurorezeptorstudienInterpretation der Parameter
R. Buchert
1   Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf
,
F. Thiele
2   Philips Research Laboratories Aachen, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 05. Oktober 2007

accepted in revised form: 03. März 2008

Publikationsdatum:
04. Januar 2018 (online)

Summary

Aim: The SRTM (simplified reference tissue model) of brain receptor imaging assumes that the time activity curve in the receptor-rich region of interest can be fitted satisfactorily by the 1-tissue compartment model. This assumption has been formulated by a rather restrictive constraint on the rate constants. Empirically, the SRTM might well describe also tracers which do not fulfil this constraint, such as [11C]raclopride, for example. However, this has not been justified rigorously. Methods: The requirements for the SRTM to be applicable are analyzed in detail. Results: The SRTM is applicable under a less restrictive constraint than described previously. The interpretation of the SRTM parameters R1 and K2 in physiological terms depends on the constraint, while the interpretation of BPND does not. Conclusion: Correct interpretation of the results of the SRTM is tracer specific. In particular, the parameter R1, which in case of compliance with the original constraint might be used to detect perfusion and/or extraction effects, might not be appropriate for this purpose in case of raclopride-like tracers.

Zusammenfassung

Ziel: Die Vereinfachung der Operationsgleichung des vereinfachten Referenzgewebemodells (SRTM) der Neurorezeptorbildgebung beruht auf der Annahme, dass die Zeitaktivitätskurve in den interessierenden rezeptorreichen Gehirnregionen hinreichend gut durch ein 1-Gewebe-Kompartment-Modell beschreibbar ist. Formelmäßig wurde dies durch eine restriktive Nebenbedingung für die Ratenkonstanten in das Modell eingeführt. Die Erfahrung zeigt, dass mit SRTM auch die Kinetik von Tracern beschrieben werden kann, die diese Nebenbedingung nicht erfüllen, z. B. [11C]Racloprid. Der Grund hierfür ist bisher nicht untersucht. Methoden: Wir beschreiben die Bedingungen für die Anwendbarkeit des SRTM. Ergebnisse: Das SRTM ist auch unter einer weniger restriktiven Nebenbedingung für die Ratenkonstanten anwendbar. Die physiologische Bedeutung der SRTM-Parameter R1 und K2 hängt jedoch von der Nebenbedingung ab. Dies gilt nicht für BPND. Schlussfolgerung: Die korrekte Interpretation der Ergebnisse aus der Anwendung des SRTM ist tracerspezifisch. So kann z. B. der Parameter R1, der bei Gültigkeit der restriktiven Nebenbedingung zur Detektion von Perfusions-und/oder Extraktionseffekten genutzt kann, bei Racloprid-artigen Tracern nicht ohne Weiteres dazu eingesetzt werden.

 
  • References

  • 1 Buchert R, Varga J, Mester J. Limitations ofbi-linear regression analysis for the determination of receptor occupancy with positron emission tomography. Nucl Med Commun 2004; 25: 451-459.
  • 2 Buck A, Gucker PM, Schonbachler RD. et al. Evaluation of serotonergic transporters using PET and C-11 (+)McN-5652: Assessment of methods. J Cereb Blood Flow Metab 2000; 20: 253-262.
  • 3 Catafau AM, Danus M, Bullich S. et al. Characterization of the SPECT 5-HT2A receptor ligand I-123-R91150 in healthy volunteers: Part 1-Pseudoequilibrium interval and quantification methods. J Nucl Med 2006; 47: 919-928.
  • 4 Costes N, Merlet I, Ostrowsky K. et al. A F-18-MPPF PET normative database of 5-HT1A receptor binding in men and women over aging. J Nucl Med 2005; 46: 1980-1989.
  • 5 Cunningham VJ, Hume SP, Price GR. et al. Compartmental analysis of diprenorphine binding to opiate receptors in the rat in vivo and its comparison with equilibrium data in vitro. J Cereb Blood Flow Metab 1991; 11: 1-9.
  • 6 Farde L, Ehrin E, Eriksson L. et al. Substituted benzamides as ligands for visualization of dopamine receptor binding in the human brain by positron emission tomography. Proc Natl Acad Sci USA 1985; 82: 3863-3867.
  • 7 Farde L, Eriksson L, Blomquist G. et al. Kinetic analysis of central [11C]raclopride binding to D2-dopamine receptors studied by PET-a comparison to the equilibrium analysis. J Cereb Blood Flow Metab 1989; 9: 696-708.
  • 8 Frankle WG, Slifstein M, Gunn RN. et al. Estimation of serotonin transporter parameters with C-11-DASB in healthy humans: Reproducibility and comparison of methods. J Nucl Med 2006; 47: 815-826.
  • 9 Ginovart N, Wilson AA, Meyer JH. et al. Positron emission tomography quantification of [11C]-DASB binding to the human serotonin transporter: modeling strategies. J Cereb Blood Flow Metab 2001; 21: 1342-1353.
  • 10 Gunn RN, LammertsmaA A, Grasby PM. Quantitative analysis of [carbonyl-11C]WAY-100635 PET studies. Nucl Med Biol 2000; 27: 477-482.
  • 11 Gunn RN, LammertsmaA A, Hume SP. et al. Parametric imaging of ligand-receptor binding in PET using asimplified reference regionmodel. Neuroimage 1997; 6: 279-287.
  • 12 Gunn RN, Sargent PA, Bench CJ. et al. Tracer kinetic modeling of the 5-HT1A receptor ligand [carbonyl-11C]WAY-100635 for PET. Neuroimage 1998; 8: 426-440.
  • 13 Herzog H. Principles and mechanisms ofreceptor studies. Nuklearmedizin 1990; 29: 81.
  • 14 Honer M, Bruhlmeier M, Missimer J. et al. Dynamic imaging of striatal D-2 receptors in mice using quad-HIDAC PET. J Nucl Med 2004; 45: 464-470.
  • 15 Hume SP, LammertsmaA A, Opacka-Juffry J. et al. Quantification of in vivo binding of [3H]RX 821002 in rat bra. In: evaluation as a radioligand for central alpha 2-adrenoceptors. Int J Rad Appl Instrum B 1992; 19: 841-849.
  • 16 Hwang DR, Narendran R, Huang YY. et al. Quantitative analysis of (-)-N-C-11-propyl-norapomorphine in vivo binding in nonhuman primates. J Nucl Med 2004; 45: 338-346.
  • 17 Innis RB, Cunningham VJ, Delforge J. et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 2007; 27: 1533-1539.
  • 18 Lammertsma AA, Bench CJ, Hume SP. et al. Comparison ofmethods for analysis of clinical [11C]raclopride studies. J Cereb Blood Flow Metab 1996; 16: 42-52.
  • 19 Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage 1996; 4: 153-158.
  • 20 Lammertsma AA, Hume SP. A simplified reference tissue model for PET receptor studies. J Nucl Med 1996; 37: 1013-1013.
  • 21 Lopresti BJ, Klunk WE, Mathis CA. et al. Simplified quantification of Pittsburgh compound B amyloid imaging PET studies: A comparative analysis. J Nucl Med 2005; 46: 1959-1972.
  • 22 Lundberg J, Odano I, Olsson H. et al. Quantification of C-11-MADAM binding to the serotonin transporter in the human brain. J Nucl Med 2005; 46: 1505-1515.
  • 23 Muzic Jr RF, Christian BT. Evaluation of objective functions for estimation of kinetic parameters. Med Phys 2006; 33: 342-353.
  • 24 Parsey RV, Kegeles LS, Hwang DR. et al. In vivo quantification of brain serotonin transporters in humans using C-11 McN5652. JNucl Med 2000; 41: 1465-1477.
  • 25 Siessmeier T, Zhou Y, Buchholz HG. et al. Parametric mapping of binding in human brain of D-2 receptor ligands of different affinities. J Nucl Med 2005; 46: 964-972.
  • 26 Slifstein M, Frankle WG, Laruelle M. Ligand Tracer Kinetics: Theory and Application. In: Otte A, Audenaert K, Peremans K. et al. (eds) Nuclear Medicine in Psychiatry. Berlin Heidelberg: Springer; 2004: 75-93.
  • 27 Slifstein M, Parsey RV, Laruelle M. Derivation of [nC]WAY-100635 binding parameters with reference tissue models: effect of violations of model assumptions. Nucl Med Biol 2000; 27: 487-492.
  • 28 Suehiro M, Scheffel U, Dannals RF. et al. A PET radiotracer for studying serotonin uptake sites: carbon-11-McN-5652Z. J Nucl Med 1993; 34: 120-127.