Nuklearmedizin 2018; 57(02): 56-63
DOI: 10.3413/Nukmed-0950-17-12
Original Article
Schattauer GmbH

Radiotoxicity of alpha particles versus high and low energy electrons in hypoxic cancer cells

Radiotoxizität von Alphapartikeln im Vergleich zu hoch- und niederenergetischen Elektronen an hypoxischen Tumorzellen
Ute Maucksch
1   University Hospital/ Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
,
Roswitha Runge
1   University Hospital/ Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
,
Liane Oehme
1   University Hospital/ Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
,
Jörg Kotzerke
1   University Hospital/ Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
,
Robert Freudenberg
1   University Hospital/ Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
› Author Affiliations
Further Information

Publication History

received: 11 December 2017

accepted in revised form: 18 January 2018

Publication Date:
28 March 2018 (online)

Summary

Purpose: Hypoxic regions of tumors are less sensitive to radio- and chemotherapy, leading to poor prognosis of patients. One option to overcome the radioresistance is the irradiation of hypoxic tumors with high linear energy transfer (LET) α- or Auger electronemitters assuming their radiotoxicity would be less dependent on the cellular oxygenation status. Therefore, the aim of the present study was to determine whether irradiation with the intracellularly distributed Auger electron/γ-emitter 99mTc using the tracer [99mTc]TcHMPAO is a promising therapeutic option for the treatment of hypoxic tumor cells. Thus, the high LET α-particleemitter 223Ra ([223Ra]RaCl2) and the low LET β-emitter 188Re ([188Re]NaReO4) were studied in comparison to [99mTc]Tc-HMPAO. Materials and methods: A431 tumor cells were incubated with [99mTc]Tc-HMPAO (1–20 MBq/2 mL), [223Ra]RaCl2 (1.4–16.3 kBq/2 mL) or [188Re]NaReO4 (0.3–13.7 MBq/2 mL) under normoxic or hypoxic conditions. The degree of radiotoxicity was analyzed using the colony forming assay (CFA), and the intracellular radionuclide uptake of the radiotracers was quantified. Results: Hypoxic A431 cells are less radiosensitive to irradiation with [99mTc]Tc-HMPAO or [188Re]NaReO4 than normoxic ones. In contrast, the radiosensitivity of A431 cells is almost independent of the oxygen status when treated with the [223Ra]RaCl2. Conclusions: We demonstrate that the Auger electron/γ-emitter 99mTc ([99mTc]Tc-HMPAO), which does not bound directly to the DNA, is not a promising therapeutic option for hypoxic tumor cells. But the high LET α-particle-emitter 223Ra is more suitable for the treatment of hypoxic tumor cells than irradiation with [99mTc]Tc-HMPAO or the low LET bemitter 188Re.

Zusammenfassung

Zielsetzung: Hypoxische Tumorregionen sind bei Radio- und Chemotherapie weniger sensitiv als Tumorregionen mit ausreichender Sauerstoffversorgung. Dies verursacht eine schlechte Prognose für Tumorpatienten. Eine Option die Radioresistenz zu überwinden, stellt die Bestrahlung mit α-Partikel-Emittern oder Auger-Elektronen-Emittern mit einem hohen linearen Energietransfer (LET) dar. In dieser Studie soll untersucht werden, ob die Bestrahlung von hypoxischen Tumorzellen mit dem intrazellulär aufgenommenen γ- sowie Auger-Elektronen-Emitter 99mTc unter Verwendung des Radiotracers [99mTc]Tc-HMPAO eine vielversprechende Therapieoption darstellen könnte. Vergleichend wurde der Hoch-LET α-Partikel-Emitter 223Ra ([223Ra]RaCl2) und der Niedrig-LET β-Emitter 188Re ([188Re]NaReO4) eingesetzt. Methoden: A431 Tumorzellen wurden unter normoxischen oder hypoxischen Kulturbedingungen mit [99mTc]Tc-HMPAO (1–20 MBq/2 ml), [223Ra]RaCl2 (1,4–16,3 kBq/2 ml) und [188Re]NaReO4 (0,3–13,7 MBq/2 ml) inkubiert. Zur Detektion der resultierenden strahlenbiologischen Wirkung wurde der Koloniebildungsassay angewendet. Zusätzlich wurde die intrazelluläre Aufnahme der Radiotracer quantifiziert. Ergebnisse: Nach Inkubation von [99mTc]Tc-HMPAO sind hypoxische A431-Zellen weniger strahlensensitiv als normoxische Zellen. Im Gegensatz zur Behandlung mit [99mTc]Tc-HMPAO oder [188Re]NaReO4 wurde bei Behandlung mit [223Ra]RaCl2 ein geringerer Einfluss des Sauerstoffstatus auf die Radiosensitivität von A431-Zellen gefunden. Schlussfolgerung: Damit konnte gezeigt werden, dass der nicht direkt an die DNA gebundene Auger-Elektronen-/ γ-Emitter 99mTc ([99mTc]Tc-HMPAO) die Radioresistenz von hypoxischen Tumorzellen nicht überwinden kann. Jedoch stellt der Hoch-LET α-Partikel-Emitter 223Ra ([223Ra]RaCl2) eine bessere Behandlungsoption dar.

 
  • References

  • 1 Aghevlian S, Boyle AJ, Reilly RM. Radioimmunotherapy of cancer with high linear energy transfer (LET) radiation delivered by radionuclides emitting alpha-particles or Auger electrons. Advanced drug delivery reviews. 2015
  • 2 Antonovic L, Brahme A, Furusawa Y. et al. Radiobiological description of the LET dependence of the cell survival of oxic and anoxic cells irradiated by carbon ions. Journal of radiation research 2013; 54: 18-26.
  • 3 Barendsen GW, Koot CJ, Van Kersen GR. et al. The effect of oxygen on impairment of the proliferative capacity of human cells in culture by ionizing radiations of different LET. International journal of radiation biology and related studies in physics, chemistry, and medicine 1966; 10: 317-327.
  • 4 Bracken CP, Whitelaw ML, Peet DJ. The hypoxiainducible factors: key transcriptional regulators of hypoxic responses. Cellular and molecular life sciences: CMLS 2003; 60: 1376-1393.
  • 5 Brown JM. The hypoxic cell: a target for selective cancer therapy – eighteenth Bruce F. Cain Memorial Award lecture. Cancer research 1999; 59: 5863-5870.
  • 6 Dahmen V, Pomplun E, Kriehuber R. Iodine- 125-labeled DNA-Triplex-forming oligonucleotides reveal increased cyto- and genotoxic effectiveness compared to Phosphorus-32. International journal of radiation biology 2016; 92: 679-685.
  • 7 Fan J, Cai H, Yang S. et al. Comparison between the effects of normoxia and hypoxia on antioxidant enzymes and glutathione redox state in ex vivo culture of CD34(+) cells. Comparative biochemistry and physiology Part B, Biochemistry & molecular biology 2008; 151: 153-158.
  • 8 Freudenberg R, Runge R, Maucksch U. et al. On the dose calculation at the cellular level and its implications for the RBE of (99m)Tc and (1)(2)(3)I. Medical physics 2014; 41: 062503.
  • 9 Freudenberg R, Wendisch M, Runge R. et al. Reduction in clonogenic survival of sodiumiodide symporter (NIS)-positive cells following intracellular uptake of (99m)Tc versus (188)Re. International journal of radiation biology 2012; 88: 991-997.
  • 10 Furusawa Y, Fukutsu K, Aoki M. et al. Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated (3)He-, (12)C- and (20)Ne-ion beams. Radiation research 2000; 154: 485-496.
  • 11 Gray LH, Conger AD, Ebert M. et al. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. The British journal of radiology 1953; 26: 638-648.
  • 12 Hall EJ, Giacca A. Radiobiology for the radiologist. 6th. ed. Philadelphia: Lippincott Williams & Wilkins; 2006
  • 13 Harada H. How can we overcome tumor hypoxia in radiation therapy?. Journal of radiation research 2011; 52: 545-556.
  • 14 Harada H. Hypoxia-inducible factor 1-mediated characteristic features of cancer cells for tumor radioresistance. Journal of radiation research 2016; 57 (Suppl. 01) i99-i105.
  • 15 Hering ER, Sealy GR, Dowman P. et al. OER and RBE for 125I and 192Ir at low dose rate on mammalian cells. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology 1987; 10: 247-252.
  • 16 Howell RW. Radiation spectra for Auger-electron emitting radionuclides: report No. 2 of AAPM Nuclear Medicine Task Group No. 6. Medical physics 1992; 19: 1371-1383.
  • 17 Huang LE, Arany Z, Livingston DM. et al. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabiliza tion of its alpha subunit. The Journal of biological chemistry 1996; 271: 32253-32259.
  • 18 Huber SM, Butz L, Stegen B. et al. Ionizing radiation, ion transports, and radioresistance of cancer cells. Frontiers in physiology 2013; 04: 212.
  • 19 Jenner TJ, deLara CM, O’Neill P. et al. Induction and rejoining of DNA double-strand breaks in V79–4 mammalian cells following gamma- and alpha-irradiation. International journal of radiation biology 1993; 64: 265-273.
  • 20 Koch CJ, Burki HJ. The oxygen-enhancement ratio for reproductive death induced by 3H or 125I damage in mammalian cells. International journal of radiation biology and related studies in physics, chemistry, and medicine 1975; 28: 417-425.
  • 21 Kotzerke J, Punzet R, Runge R. et al. 99mTc-labeled HYNIC-DAPI causes plasmid DNA damage with high efficiency. PloS one 2014; 09: e104653.
  • 22 Maucksch U, Runge R, Wunderlich G. et al. Comparison of the radiotoxicity of the 99mTc-labeled compounds 99mTc-pertechnetate, 99mTc- HMPAO and 99mTc-MIBI. International journal of radiation biology 2016; 92: 698-706.
  • 23 Pandit-Taskar N, Larson SM, Carrasquillo JA. Bone-seeking radiopharmaceuticals for treatment of osseous metastases, Part 1: alpha therapy with 223Ra-dichloride. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 2014; 55: 268-274.
  • 24 Peak JG, Ito T, Robb FT. et al. DNA damage produced by exposure of supercoiled plasmid DNA to high- and low-LET ionizing radiation: effects of hydroxyl radical quenchers. International journal of radiation biology 1995; 67: 1-6.
  • 25 Reissig F, Mamat C, Steinbach J. et al. Direct and Auger Electron-Induced, Single- and Double- Strand Breaks on Plasmid DNA Caused by 99mTc- Labeled Pyrene Derivatives and the Effect of Bonding Distance. PloS one 2016; 11: e0161973.
  • 26 Runge R, Oehme L, Kotzerke J. et al. The effect of dimethyl sulfoxide on the induction of DNA strand breaks in plasmid DNA and colony formation of PC Cl3 mammalian cells by alpha-, beta-, and Auger electron emitters (223)Ra, (188)Re, and (99m)Tc. EJNMMI research 2016; 06: 48.
  • 27 Semenza GL. Hypoxia-inducible factor 1 and the molecular physiology of oxygen homeostasis. The Journal of laboratory and clinical medicine 1998; 131: 207-214.
  • 28 Sgouros G, Roeske JC, McDevitt MR. et al. MIRD Pamphlet No. >22 (abridged): radiobiology and dosimetry of alpha-particle emitters for targeted radionuclide therapy. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 2010; 51: 311-328.
  • 29 Staab A, Zukowski D, Walenta S. et al. Response of Chinese hamster v79 multicellular spheroids exposed to high-energy carbon ions. Radiation research 2004; 161: 219-227.
  • 30 Strigari L, Torriani F, Manganaro L. et al. Tumor control in ion beam radiotherapy with different ions in presence of hypoxia: an oxygen enhancement ratio model based on the microdosimetric kinetic model. Physics in medicine and biology. 2017
  • 31 Weeks AJ, Paul RL, Marsden PK. et al. Radiobiological effects of hypoxia-dependent uptake of 64Cu-ATSM: enhanced DNA damage and cytot oxicity in hypoxic cells. European journal of nuclear medicine and molecular imaging 2010; 37: 330-338.
  • 32 Wenzl T, Wilkens JJ. Modelling of the oxygen enhancement ratio for ion beam radiation therapy. Physics in medicine and biology 2011; 56: 3251-3268.
  • 33 Wenzl T, Wilkens JJ. Theoretical analysis of the dose dependence of the oxygen enhancement ratio and its relevance for clinical applications. Radiation oncology 2011; 06: 171.
  • 34 Wulbrand C, Seidl C, Gaertner FC. et al. Alphaparticle emitting 213Bi-anti-EGFR immunoconjugates eradicate tumor cells independent of oxygenation. PloS one 2013; 08: e64730.