Nuklearmedizin 2018; 57(02): 50-55
DOI: 10.3413/Nukmed-0919-17-08
Original Article
Schattauer GmbH

Influence of scan time point and volume of intravenous contrast administration on blood-pool and liver SUVmax and SUVmean in [18F] FDG PET/CT

Einfluss von unterschiedlichen Messzeitpunkten und Volumina bei der Gabe von intravenösem Kontrastmittel in der 18F-FDG (PET/CT) auf die maximalen und durchschnittlichen standardisierten Aufnahmewerte (SUVmax/mean) im Blutpool und Lebergewebe
Matthias Schoen
1   Department of Radiology and Nuclear Medicine, Klinikum Nuremberg, Nuremberg, Germany
,
Timm Braun
1   Department of Radiology and Nuclear Medicine, Klinikum Nuremberg, Nuremberg, Germany
,
Panagiota Manava
1   Department of Radiology and Nuclear Medicine, Klinikum Nuremberg, Nuremberg, Germany
,
Sigrid Ludwigs
1   Department of Radiology and Nuclear Medicine, Klinikum Nuremberg, Nuremberg, Germany
,
Michael Lell
1   Department of Radiology and Nuclear Medicine, Klinikum Nuremberg, Nuremberg, Germany
› Author Affiliations
Further Information

Publication History

received: 02 August 2017

accepted in revised form: 04 January 2018

Publication Date:
28 March 2018 (online)

Summary

Aim: To investigate the influence of scan time point and volume of intravenous contrast material in 18F-FDG PET/CT on maximum and mean standardized uptake values (SUVmax/mean) in bloodpool and liver. Methods: In 120 patients scheduled for routine whole-body 18F-FDG PET/CT the maximum and mean standardized uptake values (SUVmax/SUVmean) in the liver and blood pool were measured after varying scan time-point (delay 0 s-140 s post injectionem) and volume of contrast material (CM; 0 ml, 80 ml, 100 ml of 300 mg/ml of Iodine). Six groups of 20 patients were investigated: (1) without intravenous CM, (2-5) injection of 100 ml CM with a delay of 80 s (2), 100 s (3), 120 s (4), 140 s (5), and 80 ml CM and a delay of 100 s (6). SUVmax, SUVmean, maximum Hounsfield units (HUmax) and average Hounsfield units (HUav) were calculated with the use of manually drawn regions of interests (ROIs) over the aortic arch and healthy liver tissue. Results: SUVmax in bloodpool was significantly higher in group 3, 4 and 6 compared to group 1. Groups 2 and 5 also showed higher mean values of SUVmax, but the difference was not significant. SUVmean in bloodpool was also higher in groups 2, 3, 4, 5 and 6 compared to group 1, but the differences were only statistically significant in group 3. Both SUVmax and SUVmean in healthy liver tissue did not show significant differences when compared to the non contrast-enhanced control group. Conclusion: SUVmax and to a lesser extent SUVmean measured in CM enhanced FDG PET/CT in blood pool could be significantly altered in high contrast CT examinations. This should be kept in mind in PET/CT protocols and evaluation relying on SUVmax and SUVmean, for example when used in the assessment of therapy response, especially in highly vascularized tumor lesions.

Zusammenfassung

Ziel: Das Ziel dieser Studie war den Einfluss von unterschiedlichen Messzeitpunkten und Volumina bei der Gabe von intravenösem Kontrastmittel in der 18F-FDG PET/CT auf SUVmax und SUVmean im Blutpool und Lebergewebe zu untersuchen. Methoden: In 120 Patienten, geplant für eine Ganzkörper 18F-FDG -PET/CT, wurden die maximalen und durchschnittlichen standardisierten Aufnahmewerte (SUVmax/SUVmean) in der Leber und im Blutpool, jeweils nach unterschiedlichen Messzeitpunkten (Verzögerung 0 s-140 s post injectionem) und verschiedenen Volumina von Kontrastmittel (KM; 0 ml, 80 ml, 100 ml mit einer Konzentration von 300 mg/ml Jod) gemessen. Sechs Gruppen von je 20 Patienten wurden untersucht: (1) ohne intravenöses KM, (2–5) Injektion von 100 ml KM mit einer Verzögerung von 80 s (2), 100 s (3), 120 s (4), 140 s (5), und 80 ml KM mit einer Verzögerung von 100 s (6). Es wurden jeweils die SUVmax, SUVmean, die maximalen and die durchschnittlichen Hounsfield Einheiten (HUav, HUmax) anhand manuell gezeichneter Bereiche von Interesse (ROIs) im Aortenbogen und im gesunden Lebergewebe berechnet. Ergebnisse: Die SUVmax im Blutpool waren im Vergleich zur Gruppe 1 signifikant höher in Gruppe 3, 4 und 6. Die Gruppen 2 und 5 zeigten ebenfalls höhere Durchschnittswerte von SUVmax, der Unterschied war jedoch nicht signifikant. Die SUVmean im Blutpool waren im Vergleich zur Gruppe 1 ebenfalls höher in den Gruppen 2, 3, 4, 5 und 6, allerdings waren die Unterschiede nur in Gruppe 3 statistisch signifikant. Im Lebergewebe zeigten sowohl SUVmax, als auch SUVmean keine signifikanten Unterschiede im Vergleich zu der nativen Kontrollgruppe. Schlussfolgerungen: In der Kontrastmittel-gestützten FDG PET/CT können die SUVmax und in geringerem Ausmaß auch SUVmean im Blutpool durch Hochkontrast-CT Untersuchungen signifikant beeinflusst werden. Dies sollte bei PET/CT Protokollen bzw. Auswertungen, die auf SUVmax und SUVmean beruhen, berücksichtigt werden, zum Beispiel bei der Beurteilung des Therapieansprechens insbesondere bei stark vaskularisiertem Tumorgewebe.

 
  • References

  • 1 Adams MC, Turkington TG, Wilson JM, Wong TZ. A systematic review of the factors affecting accuracy of SUV measurements. AJR 2010; 195: 310-320.
  • 2 Antoch G, Freudenberg LS, Egelhof T. et al. Focal tracer uptake: a potential artifact in contrast-enhanced dual-modality PET/CT scans. J Nucl Med 2002; 43: 1339-1342.
  • 3 Balink H, Bennink RJ, van Eck-Smit BLF, Verberne HJ. The Role of 18F-FDG PET/CT in Large-Vessel Vasculitis: Appropriateness of Current Classification Criteria?. BioMed Research International 2014; 2014: 687608 doi:10.1155/2014/687608..
  • 4 Baron RL. Understanding and optimizing use of contrast material for CT of the liver. AJR 1994; 163: 323-331.
  • 5 Berthelsen AK, Holm S, Loft A. et al. PET/CT with intravenous contrast can be used for PET attenuation correction in cancer patients. Eur J Nucl Med Mol Imaging 2005; 32: 1167-1175.
  • 6 Beyer T, Antoch G, Bockisch A, Stattaus J. Optimized intravenous contrast administration for diagnostic whole-body 18F-FDG PET/CT. J Nucl Med 2005; 46: 429-435.
  • 7 Beyer T, Antoch G, Muller S. et al. Acquisition protocol considerations for combined PET/CT imaging. J Nucl Med 2004; 45 (Suppl. 01) 25S-35S.
  • 8 Beyer T, Townsend D, Blodgett T. Dual-modality PET/CT tomography for clinical oncology. Q J Nucl Med 2002; 46: 24-34.
  • 9 Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R. et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000; 41: 1369-1379.
  • 10 Burger C, Goerres G, Schoenes S. et al. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging 2002; 29 (07) 922-927.
  • 11 Carney JPJ, Townsend DW, Rappoport V, Bendriem B. Method for transforming CT images for attenuation correction in PET/CT imaging. Medical Physics 2006; 33: 976-983.
  • 12 Charron M, Beyer T, Bohnen NN. et al. Image analysis in patients with cancer studied with a combined PET and CT scanner. Clin Nucl Med 2000; 25: 905-910.
  • 13 Dizendorf E, Hany TF, Buck A, von Schulthess GK, Burger C. Cause and magnitude of the error induced by oral CT contrast agent in CT-based attenuation correction of PET emission studies. J Nucl Med 2003; 44: 732-738.
  • 14 Gupta NC, Tamim WJ, Graeber GG, Bishop HA, Hobbs GR. Mediastinal lymph node sampling following positron emission tomography with fluorodeoxyglucose imaging in lung cancer staging. Chest 2001; 120: 521-527.
  • 15 van den Hoff J, Oehme L, Schramm G, Maus J, Lougovski A, Petr J, Beuthien-Baumann B, Hofheinz F. The PET-derived tumor-to-blood standard uptake ratio (SUR) is superior to tumor SUV as a surrogate parameter of the metabolic rate of FDG. EJNMMI Res 2013; 04: 77.
  • 16 van den Hoff J, Lougovski A, Schramm G, Maus J, Oehme L, Petr J, Beuthien-Baumann B, Kotzerke J, Hofheinz F. Correction of scan time dependence of standard uptake values in oncological pet. EJNMMI Res 2014; 04: 18.
  • 17 Hofheinz F, Hoff J, Steffen IG, Lougovski A, Ego K, Amthauer H. et al. Comparative evaluation of SUV, tumor-to-blood standard uptake ratio (SUR), and dual time point measurements for assessment of the metabolic uptake rate in FDG PET. EJNMMI Res 2016; 06 (01) 53.
  • 18 Hubbell JH. Review of photon interaction cross section data in the medical and biological context. Phys Med Biol 1999; 44: R1-22.
  • 19 Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994; 13: 601-609.
  • 20 Juweid ME, Cheson BD. Positron-emission tomography and assessment of cancer therapy. N Engl J Med 2006; 354: 496-507.
  • 21 Kinahan PE, Fletcher JW. Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. Semin Ultrasound CT MR 2010; 31: 496-505.
  • 22 Kinahan P, Hasegawa B, Beyer T. X-ray based attenuation correction for PET/CT scanners. Semin Nucl Med 2003; 33: 166-179.
  • 23 Kinahan PE, Townsend DW, Beyer T. et al. Attenuation correction for a combined 3D PET/CT scanner. Med Phys 1998; 25 (10) 2046-2053.
  • 24 Kubota K. From tumor biology to clinical PET: a review of positron emission tomography (PET) in oncology. Ann Nucl Med 2001; 15: 471-486.
  • 25 Padhani AR. Spiral CT: thoracic applications. Eur J Radiol 1998; 28: 2-17.
  • 26 Pettinato C. et al. Artefacts of PET/CT Images. Biomedical Imaging and Intervention Journal. 2.4 (2006): e60. PMC. Web. 24 Oct. 2017
  • 27 Scott WJ, Gobar LS, Terry JD, Dewan NA, Sunderland JJ. Mediastinal lymph node staging of nonsmall-cell lung cancer: a prospective comparison of computed tomography and positron emission tomography. J Thorac Cardiovasc Surg 1996; 111: 642-648.
  • 28 Tanaka F, Yanagihara K, Otake Y, Miyahara R, Kawano Y, Nakagawa T. et al. Surgery for nonsmall cell lung cancer: postoperative survival based on the revised tumor-node-metastasis classification and its time trend. Eur J Cardiothorac Surg 2000; 18: 147-155.
  • 29 Wang J, Wu N, Cham MD, Song Y. Tumor response in patients with advanced non-small cell lung cancer: perfusion CT evaluation of chemotherapy and radiation therapy. AJR Am J Roentgenol 2009; 193 (04) 1090-1096.
  • 30 Weber WA. Assessing tumor response to therapy. J Nucl Med 2009; 50 (Suppl. 01) 1S-10S.
  • 31 Yoon YC, Lee KS, Shim YM, Kim BT, Kim K, Kim TS. Metastasis to regional lymph nodes in patients with esophageal squamous cell carcinoma: CT versus FDG PET for presurgical detection – prospective study1. Radiology 2003; 227: 764-770.