CC BY-NC-ND 4.0 · Arq Neuropsiquiatr 2020; 78(10): 603-610
DOI: 10.1590/0004-282X20200081
Article

Enriched environment alleviates post-stroke cognitive impairment through enhancing α7-nAChR expression in rats

Ambiente enriquecido alivia o comprometimento cognitivo pós-AVC em ratos por meio do aumento da expressão de α7-nAChR
1   Shanghai University of Sport, Shanghai, China.
,
1   Shanghai University of Sport, Shanghai, China.
,
2   Ningxia Medical University, Yicnchuan, Ningxia, China.
,
Xia BI
3   Shanghai University of Medicine & Health Sciences, Zhoupu Hospital, Shanghai, China.
› Author Affiliations
Supported by: Leading Personnel Training Project of Shanghai Pudong New District Municipal Health Bureau in China PWR12018-04
Supported by: Science and Technology Development Fund of Shanghai Pudong New District in China PKJ2018-Y38
Support: This study was supported by the Leading Personnel Training Project of Shanghai Pudong New District Municipal Health Bureau in China, No. PWR12018-04 (to XB); and the Science and Technology Development Fund of Shanghai Pudong New District in China, No. PKJ2018-Y38 (to XB).

ABSTRACT

Background: Enriched environment (EE) is a simple and effective intervention to improve cognitive function in post-stroke cognitive impairment (PSCI), partly due to the rebalancing of the cholinergic signaling pathway in the hippocampus. α7-nicotinic acetylcholine receptor (α7-nAChR) is a cholinergic receptor whose activation inhibits inflammation and promotes the recovery of neurological function in PSCI patients. However, it is still unclear whether EE can regulate α7-nAChR and activate the cholinergic anti-inflammatory pathway (CAP) in PSCI. Objective: To investigate the effects of EE on cognitive impairment, and the role of α7-nAChR in PSCI. Methods: A PSCI rat model was induced by middle cerebral artery occlusion and reperfusion (MCAO/R) and were reared in standard environment (SE) or EE for 28d, control group with sham surgery. Cognitive function was determined by Morris water maze test. The long-term potentiation (LTP) was assessed by Electrophysiology. Histopathological methods were used to determine infarct volume, α7-nAChR expression and the cytokines and cholinergic proteins expression. Results: Compared with SE group, rats in EE group had better cognitive function, higher expression of α7-nAChR positive neurons in hippocampal CA1 region. In addition, EE attenuated unfavorable changes induced by MCAO/R in cytokines and cholinergic proteins, and also enhanced LTP promoted by nicotine and attenuated by α-BGT; but showed no significantly difference in infarct volume. Conclusions: EE markedly improves cognitive impairment and enhances neuroplasticity in PSCI rats, which may be closely related to enhancement of α7-nAChR expression.

RESUMO

Introdução: O ambiente enriquecido (AE) é uma intervenção simples e eficaz para melhorar a função cognitiva no comprometimento cognitivo pós-AVC, em parte devido ao reequilíbrio da via de sinalização colinérgica no hipocampo. O receptor nicotínico α7 de acetilcolina (α7-nAChR) é um receptor colinérgico cuja ativação inibe inflamação e promove a recuperação da função neurológica em pacientes com comprometimento cognitivo pós-AVC. No entanto, ainda não está claro se o AE pode regular α7-nAChR e ativar a via anti-inflamatória colinérgica (VAC) em comprometimento cognitivo pós-AVC. Objetivo: Investigar os efeitos do AE no comprometimento cognitivo e o papel do α7-nAChR no comprometimento cognitivo pós-AVC. Métodos: Modelo de comprometimento cognitivo pós-AVC foi induzido em ratos por oclusão e reperfusão da artéria cerebral média (MCAO/R), que foram criados em ambiente padrão (AP) ou em AE por 28d; grupo controle com cirurgia simulada. A função cognitiva foi determinada pelo teste do labirinto aquático de Morris. A potenciação de longo prazo (PLP) foi avaliada por eletrofisiologia. Métodos histopatológicos foram usados para determinar o volume do infarto, a expressão de α7-nAChR e a expressão de citocinas e proteínas colinérgicas. Resultados: Em comparação com o grupo AP, os ratos do grupo AE tiveram melhor função cognitiva, com maior expressão de neurônios positivos para α7-nAChR na região CA1 do hipocampo. Além disso, o AE atenuou alterações desfavoráveis induzidas por MCAO/R em citocinas e proteínas colinérgicas, e também aumentou a PLP promovida pela nicotina e atenuada por α-BGT, mas não mostrou nenhuma diferença significativa no volume do infarto. Conclusão: O AE melhora acentuadamente o comprometimento cognitivo e aumenta a neuroplasticidade em ratos com comprometimento cognitivo pós-AVC, o que pode estar intimamente relacionado ao aumento da expressão de α7-nAChR.

Authors’ contributions:

MY: study design, experimental implementation and manuscript drafting. XB: supervision of all experiments and data interpretation. XXZ: experimental implementation and data collection. XCF: data analysis and manuscript revision. All authors have read and approved the manuscript.


Support: This study was supported by the Leading Personnel Training Project of Shanghai Pudong New District Municipal Health Bureau in China, No. PWR12018-04 (to XB); and the Science and Technology Development Fund of Shanghai Pudong New District in China, No. PKJ2018-Y38 (to XB).




Publication History

Received: 11 January 2020

Accepted: 03 March 2020

Article published online:
13 June 2023

© 2020. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Jacquin A, Binquet C, Rouaud O, Graule-Petot A, Daubail B, Osseby GV, et al. Post-stroke cognitive impairment: high prevalence and determining factors in a cohort of mild stroke. J Alzheimers Dis. 2014;40(4):1029-38. https://doi.org/10.3233/jad-131580
  • 2 Cumming TB, Brodtmann A, Darby D, Bernhardt J. The importance of cognition to quality of life after stroke. J Psychosom Res. 2014 Nov;77(5):374-9. https://doi.org/10.1016/j.jpsychores.2014.08.009
  • 3 Mijajlović MD, Pavlović A, Brainin M, Heiss WD, Quinn TJ, Ihle-Hansen HB, et al. Post-stroke dementia - a comprehensive review. BMC Med. 2017 Jan;15(1):11. https://doi.org/10.1186/s12916-017-0779-7
  • 4 Li YW, Li QY, Wang JH, Xu XL. Contribution of p38 MAPK to the ameliorating effect of enriched environment on the cognitive deficits induced by chronic cerebral hypoperfusion. Cell Physiol Biochem. 2016;40(3-4):549-57. https://doi.org/10.1159/000452568
  • 5 White JH, Bartley E, Janssen H, Jordan LA, Spratt N. Exploring stroke survivor experience of participation in an enriched environment: a qualitative study. Disabil Rehabil. 2015;37(7):593-600. https://doi.org/10.3109/09638288.2014.935876
  • 6 Wei XM, Yang W, Liu LX, Qi WX. Effects of L-arginine and N(omega)-nitro-L-arginine methylester on learning and memory and alpha7 nAChR expression in the prefrontal cortex and hippocampus of rats. Neurosci Bull. 2013 Jun;29(3):303-10. https://doi.org/10.1007/s12264-013-1331-1
  • 7 Xu KL, Liu XQ, Yao YL, Ye MR, Han YG, Zhang T, et al. Effect of dexmedetomidine on rats with convulsive status epilepticus and association with activation of cholinergic anti-inflammatory pathway. Biochem Biophys Res Commun. 2018 Jan;495(1):421-6. https://doi.org/10.1016/j.bbrc.2017.10.124.
  • 8 Udakis M, Wright VL, Wonnacott S, Bailey CP. Integration of inhibitory and excitatory effects of α7 nicotinic acetylcholine receptor activation in the prelimbic cortex regulates network activity and plasticity. Neuropharmacology. 2016 Jun;105:618-29. https://doi.org/10.1016/j.neuropharm.2016.02.028
  • 9 Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature. 2003 Jan;421(6921):384-8. https://doi.org/10.1038/nature01339
  • 10 Neumann S, Shields NJ, Balle T, Chebib M, Clarkson AN. Innate immunity and inflammation post-stroke: an α7-nicotinic agonist perspective. Int J Mol Sci. 2015 Dec;16(12):29029-46. https://doi.org/10.3390/ijms161226141
  • 11 Baraldi T, Schöwe NM, Balthazar J, Monteiro-Silva KC, Albuquerque MS, Buck HS, et al. Cognitive stimulation during lifetime and in the aged phase improved spatial memory, and altered neuroplasticity and cholinergic markers of mice. Exp Gerontol. 2013 Aug;48(8):831-8. https://doi.org/10.1016/j.exger.2013.05.055
  • 12 Wang X, Chen A, Wu H, Ye M, Cheng H, Jiang X, et al. Enriched environment improves post-stroke cognitive impairment in mice by potential regulation of acetylation homeostasis in cholinergic circuits. Brain Res. 2016 Nov;1650:232-42. https://doi.org/10.1016/j.brainres.2016.09.018
  • 13 Mao LL, Hao DL, Mao XW, Xu YF, Huang TT, Wu BN, et al. Neuroprotective effects of bisperoxovanadium on cerebral ischemia by inflammation inhibition. Neurosci Lett. 2015 Aug;602:120-5. https://doi.org/10.1016/j.neulet.2015.06.040
  • 14 Chen SF, Hsu CW, Huang WH, Wang JY. Post-injury baicalein improves histological and functional outcomes and reduces inflammatory cytokines after experimental traumatic brain injury. Br J Pharmacol. 2008 Dec;155(8):1279-96. https://doi.org/10.1038/bjp.2008.345
  • 15 Li MZ, Zhan Y, Yang L, Feng XF, Zou HY, Lei JF, et al. MRI Evaluation of axonal remodeling after combination treatment with xiaoshuan enteric-coated capsule and enriched environment in rats after ischemic stroke. Front Physiol. 2019;10:1528. https://doi.org/10.3389/fphys.2019.01528
  • 16 Qian HZ, Zhang H, Yin Ll, Zhang JJ. Postischemic housing environment on cerebral metabolism and neuron apoptosis after focal cerebral ischemia in rats. Curr Med Sci. 2018 Aug;38(4):656-65. https://doi.org/10.1007/s11596-018-1927-9
  • 17 Karelina K, Norman GJ, Zhang N, DeVries AC. Social contact influences histological and behavioral outcomes following cerebral ischemia. Exp Neurol. 2009 Dec;220(2):276-82. https://doi.org/10.1016/j.expneurol.2009.08.022
  • 18 Gonçalves LV, Herlinger AL, Alarcon Ferreira TA, Coitinho JB, Wanderley Pires RG, Martins-Silva C. Environmental enrichment cognitive neuroprotection in an experimental model of cerebral ischemia: biochemical and molecular aspects. Behav Brain Res. 2018 Aug;348:171-83. https://doi.org/10.1016/j.bbr.2018.04.023
  • 19 Janssen H, Bernhardt J, Collier JM, Sena ES, McElduff P, Attia J, et al. An enriched environment improves sensorimotor function post-ischemic stroke. Neurorehabil Neural Repair. 2010 Nov-Dec;24(9):802-13. https://doi.org/10.1177/1545968310372092
  • 20 Yang Y, Zhang J, Xiong L, Deng M, Wang J, Xin J, et al. Cognitive improvement induced by environment enrichment in chronic cerebral hypoperfusion rats: a result of upregulated endogenous neuroprotection? J Mol Neurosci. 2015 Jun;56(2):278-89. https://doi.org/10.1007/s12031-015-0529-2
  • 21 Ruscher K, Johannesson E, Brugiere E, Erickson A, Rickhag M, Wieloch T. Enriched environment reduces apolipoprotein E (ApoE) in reactive astrocytes and attenuates inflammation of the peri-infarct tissue after experimental stroke. J Cereb Blood Flow Metab. 2009 Nov;29(11):1796-805. https://doi.org/10.1038/jcbfm.2009.96
  • 22 Baranowska U, Wiśniewska RJ. The alpha7-nACh nicotinic receptor and its role in memory and selected diseases of the central nervous system. Postepy Hig Med Dosw (Online). 2017 Jul;71(0):633-48. https://doi.org/10.5604/01.3001.0010.3844
  • 23 Duris K, Lipkova J, Jurajda M. Cholinergic anti-inflammatory pathway and stroke. Curr Drug Deliv. 2017;14(4):449-57. https://doi.org/10.2174/1567201814666170201150015
  • 24 Han Z, Li L, Wang L, Degos V, Maze M, Su H. Alpha-7 nicotinic acetylcholine receptor agonist treatment reduces neuroinflammation, oxidative stress, and brain injury in mice with ischemic stroke and bone fracture. J Neurochem. 2014 Nov;131(4):498-508. https://doi.org/10.1111/jnc.12817
  • 25 Micheau J, Marighetto A. Acetylcholine and memory: a long, complex and chaotic but still living relationship. Behav Brain Res. 2011 Aug;221(2):424-9. https://doi.org/10.1016/j.bbr.2010.11.052
  • 26 Prado MA, Reis RA, Prado VF, de Mello MC, Gomez MV, de Mello FG. Regulation of acetylcholine synthesis and storage. Neurochem Int. 2002 Nov;41(5):291-9. https://doi.org/10.1016/s0197-0186(02)00044-x
  • 27 Moreira EL, de Oliveira J, Nunes JC, Santos DB, Nunes FC, Vieira DS, et al. Age-related cognitive decline in hypercholesterolemic LDL receptor knockout mice (LDLr-/-): evidence of antioxidant imbalance and increased acetylcholinesterase activity in the prefrontal cortex. J Alzheimers Dis. 2012;32(2):495-511. https://doi.org/10.3233/JAD-2012-120541
  • 28 Nawaz A, Batool Z, Shazad S, Rafiq S, Afzal A, Haider S. Physical enrichment enhances memory function by regulating stress hormone and brain acetylcholinesterase activity in rats exposed to restraint stress. Life Sci. 2018 Aug;207:42-9. https://doi.org/10.1016/j.lfs.2018.05.049
  • 29 Grasselli G, Hansel C. Cerebellar long-term potentiation: cellular mechanisms and role in learning. Int Rev Neurobiol. 2014;117:39-51. https://doi.org/10.1016/B978-0-12-420247-4.00003-8
  • 30 Bayat M, Sharifi MD, Haghani M, Shabani M. Enriched environment improves synaptic plasticity and cognitive deficiency in chronic cerebral hypoperfused rats. Brain Res Bull. 2015 Oct;119(Pt A):34-40. https://doi.org/10.1016/j.brainresbull.2015.10.001
  • 31 Leal G, Bramham CR, Duarte CB. BDNF and hippocampal synaptic plasticity. Vitam Horm. 2017;104:153-95. https://doi.org/10.1016/bs.vh.2016.10.004
  • 32 Johansson J, Formaggio E, Fumagalli G, Chiamulera C. Choline up-regulates BDNF and down-regulates TrkB neurotrophin receptor in rat cortical cell culture. Neuroreport. 2009 Jun;20(9):828-32. https://doi.org/10.1097/WNR.0b013e32832b7324
  • 33 Massey KA, Zago WM, Berg DK. BDNF up-regulates alpha7 nicotinic acetylcholine receptor levels on subpopulations of hippocampal interneurons. Mol Cell Neurosci. 2006 Dec;33(4):381-8. https://doi.org/10.1016/j.mcn.2006.08.011
  • 34 Lau PY, Katona L, Saghy P, Newton K, Somogyi P, Lamsa KP. Long-term plasticity in identified hippocampal GABAergic interneurons in the CA1 area in vivo. Brain Struct Funct. 2017;222(4):1809-27. https://doi.org/10.1007/s00429-016-1309-7