Open Access
CC BY-NC-ND 4.0 · Arq Neuropsiquiatr 2020; 78(11): 700-707
DOI: 10.1590/0004-282X20200067
Article

Diagnostic characteristics of Xpert MTB/RIF assay for the diagnosis of tuberculous meningitis and rifampicin resistance in Southern Brazil

Características diagnósticas do Xpert MTB/RIF para o diagnóstico de meningite tuberculosa e resistência à rifampicina no Sul do Brasil

Authors

  • Sergio Monteiro de Almeida

    1   Universidade Federal do Paraná, Hospital de Clínicas, Ambulatório de Neuroinfecção Curitiba PR, Brazil.
    2   Universidade Federal do Paraná, Hospital de Clínicas, Laboratório de virologia, Curitiba PR, Brazil.
  • Gislene Maria Botão Kussen

    3   Universidade Federal do Paraná, Hospital de Clínicas, Laboratório de Bacteriologia, Curitiba PR, Brazil.
  • Laura Cogo

    3   Universidade Federal do Paraná, Hospital de Clínicas, Laboratório de Bacteriologia, Curitiba PR, Brazil.
  • José Henrique Carvalho

    1   Universidade Federal do Paraná, Hospital de Clínicas, Ambulatório de Neuroinfecção Curitiba PR, Brazil.
  • Keite Nogueira

    3   Universidade Federal do Paraná, Hospital de Clínicas, Laboratório de Bacteriologia, Curitiba PR, Brazil.

ABSTRACT

Background: The timely diagnosis of tuberculous meningitis (TBM) is challenging. Molecular diagnostic tools are necessary for TBM, particularly in low- and middle-income countries. Objectives: We aimed to calculate the diagnostics characteristics of Xpert MTB/RIF for the detection of Mycobacterium tuberculosis in the cerebrospinal fluid (CSF) and the frequency of rifampicin (RIF)-resistance in the CSF samples. Methods: A total of 313 consecutive CSF samples were studied and categorized into TBM definite, probable, possible, or not TBM cases based on the clinical, laboratory, and imaging data. Results: For the definite TBM cases (n=7), the sensitivity, specificity, efficiency, and positive likelihood ratio were 100, 97, 97, and 38%, respectively. However, for the TBM definite associated with the probable cases (n=24), the sensitivity decreased to 46%. All CSF samples that were Xpert MTB/RIF-positive were RIF susceptible. Conclusion: Xpert MTB/RIF showed high discriminating value among the microbiology-proven TBM cases, although the values for the probable and possible TBM cases were reduced. Xpert MTB/RIF contributes significantly to the diagnosis of TBM, mainly when coupled with the conventional microbiological tests and clinical algorithms.

RESUMO

Introdução: O diagnóstico da meningite tuberculosa (TBM) é desafiador. Ferramentas de diagnóstico molecular são necessárias para esse diagnóstico, particularmente em países de baixa e média renda. Objetivos: Calcular as características diagnósticas do Xpert MTB/RIF para a detecção de Mycobacterium tuberculosis no líquido cefalorraquidiano (LCR) e a frequência de resistência à rifampicina (RIF) nas amostras do LCR. Métodos: Um total de 313 amostras consecutivas de LCR foram estudadas e categorizadas em casos de TBM definida, provável, possível ou não TBM, com base nos dados clínicos, laboratoriais e de imagem. Resultados: Para os casos definidos de TBM (n=7), sensibilidade, especificidade, eficiência e razão de verossimilhança positiva foram de 100, 97, 97 e 38%, respectivamente. No entanto, para os casos de TBM definidos associados aos prováveis (n=24), a sensibilidade diminuiu para 46%. Todas as amostras de LCR que foram positivas para Xpert MTB/RIF foram suscetíveis a RIF. Conclusão: O Xpert MTB/RIF mostrou alto valor discriminante entre os casos TBM comprovados por microbiologia, porém o valor nos casos prováveis e possíveis de TBM foram reduzidos. O Xpert MTB/RIF contribui significativamente para o diagnóstico de TBM, principalmente quando associado aos testes microbiológicos convencionais e algoritmos clínicos.

Authors contributions:

All the authors participated in the concept, data collection, analysis and data interpretation, and paper writing.




Publication History

Received: 19 February 2020

Accepted: 21 May 2020

Article published online:
07 June 2023

© 2020. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Wilder-Smith EP. Mycobacterium tuberculosis. In: Lisak RP, Truong DD, Carroll WM, Bhidayasiri R, editors. International neurology, a clinical approach. Oxford (UK): Blackwell Publishing; 2009. p.258-61.
  • 2 World Health Organization. Resolution WHA62.15. Prevention and control of multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. In: Sixty-second World Health Assembly, Geneva, 18–22 May 2009. Resolutions and decisions; annexes. Geneva: World Health Organization; 2009. (WHA62/2009/REC/1):25-9.
  • 3 Roca B, Tornador N, Tornador E. Presentation and outcome of tuberculous meningitis in adults in the province of Castellon, Spain: a retrospective study. Epidemiol Infect. 2008 Nov;136(11):1455-62. https://doi.org/10.1017/S0950268807000258
  • 4 Thakur R, Goyal R, Sarma S. laboratory diagnosis of tuberculous meningitis – is there a scope for further improvement? J Lab Physicians. 2010 Jan;2(1):21-4. https://doi.org/10.4103/0974-2727.66705
  • 5 Fishman RA. Cerebrospinal fluid in diseases of the nervous system. 2. ed. Philadelphia: WB Saunders; 1992.
  • 6 Pormohammad A, Nasiri MJ, Mchugh TD, Riahi SE, Bahre NC. A systematic review and meta-analysis of the diagnostic accuracy of nucleic acid amplification tests for tuberculous meningitis. J Clin Microbiol. 2019 Jun;57(6):e01113-18. https://doi.org/10.1128/JCM.01113-18
  • 7 Marais S, Thwaites G, Schoeman JF, Török ME, Misra UK, Prasad K, et al. Tuberculous meningitis: a uniform case definition for use in clinical research. Lancet Infect Dis. 2010 Nov;10(11):803-12. https://doi.org/10.1016/S1473-3099(10)70138-9
  • 8 Kent PT. Public health mycobacteriology: a guide for the level III laboratory. Atlanta: Centers for Disease Control; 1985.
  • 9 Galen RS, Gambino SR. Beyond normality, the predictive value and efficiency of medical diagnoses. New York: Wiley & Sons; 1975.
  • 10 Mitchell AJ. The clinical significance of subjective memory complaints in the diagnosis of mild cognitive impairment and dementia: a meta-analysis. Int J Geriatr Psychiatry. 2008 Nov;23(11):1191-202. https://doi.org/10.1002/gps.2053
  • 11 Mitchell AJ. Sensitivity x PPV is a recognized test called the clinical utility index (CUI+). Eur J Epidemiol. 2011 Mar;26(3):251-2;author reply 252. https://doi.org/10.1007/s10654-011-9561-x
  • 12 Akobeng AK. Understanding diagnostic tests 2: likelihood ratios, pre- and post-test probabilities and their use in clinical practice. Acta Paediatr. 2007 Apr;96(4):487-91. https://doi.org/10.1111/j.1651-2227.2006.00179.x
  • 13 McGee S. Simplifying likelihood ratios. J Gen Intern Med. 2002 Aug;17(8):646-9. https://doi.org/10.1046/j.1525-1497.2002.10750.x
  • 14 Akobeng AK. Understanding diagnostic tests 3: receiver operating characteristic curves. Acta Paediatr. 2007 May;96(5):644-7. https://doi.org/10.1111/j.1651-2227.2006.00178.x
  • 15 Sackett DL, Haynes RB. The architecture of diagnostic research. BMJ. 2002 Mar;324(7336):539-41. https://doi.org/10.1136/bmj.324.7336.539
  • 16 Fagan TJ. Letter: nomogram for Bayes theorem. N Engl J Med. 1975 Jul;293(5):257. https://doi.org/10.1056/NEJM197507312930513
  • 17 Prasad R, Gupta N, Banka A. Multidrug-resistant tuberculosis/rifampicin-resistant tuberculosis: Principles of management. Lung India. 2018 Jan-Feb;35(1):78-81. https://doi.org/10.4103/lungindia.lungindia_98_17
  • 18 Denkinger CM, Schumacher SG, Boehme CC, Dendukuri N, Pai M, Steingart KR. Xpert MTB/RIF assay for the diagnosis of extrapulmonary tuberculosis: a systematic review and meta-analysis Eur Respir J. 2014 Aug;44(2):435-46. https://doi.org/10.1183/09031936.00007814
  • 19 Kohli M, Schiller I, Dendukuri N, Dheda K, Denkinger CM, Schumacher SG, et al. Xpert® MTB/RIF assay for extrapulmonary tuberculosis and rifampicin resistance. Cochrane Database Syst Rev. 2018 Aug;8(8):CD012768. https://doi.org/10.1002/14651858.CD012768.pub2
  • 20 Wilkinson RJ, Rohlwink U, Misra UK, van Crevel R, Mai NTH, Dooley KE, et al. Tuberculous meningitis. Nat Rev Neurol. 2017 Oct;13(10):581-98. https://doi.org/10.1038/nrneurol.2017.120
  • 21 Allahyartorkaman M, Mirsaeidi M, Hamzehloo G, Amini S, Zakiloo M, Nasiri MJ. Low diagnostic accuracy of Xpert MTB/RIF assay for extrapulmonary tuberculosis: a multicenter surveillance. Sci Rep. 2019 Dec;9(1):18515. https://doi.org/10.1038/s41598-019-55112-y
  • 22 Pink F, Brown TJ, Kranzer K, Drobniewski. F Evaluation of Xpert MTB/RIF for detection of Mycobacterium tuberculosis in cerebrospinal fluid. J Clin Microbiol. 2016 Mar;54(3):809-11. https://doi.org/10.1128/JCM.02806-15
  • 23 Azevedo RG, Dinallo FS, de Laurentis LS, Boulware DR, Vidal JE. Xpert MTB/RIF® assay for the diagnosis of HIV-related tuberculous meningitis in São Paulo, Brazil. Int J Tuberc Lung Dis. 2018 Jun;22(6):706-7. https://doi.org/10.5588/ijtld.18.0191
  • 24 Ratnamohan VM, Cunningham AL, Rawlinson WD. Removal of inhibitors of CSF-PCR to improve diagnosis of herpesviral encephalitis. J Virol Methods. 1998 May;72(1):59-65. https://doi.org/10.1016/s0166-0934(98)00020-2
  • 25 Almeida SM, Raboni SM, Noqueira MB, Vidal LRR. Red blood cells in cerebrospinal fluid as possible inhibitory factor for enterovirus RT-PCR. Arq Neuro-Psiquiatr. 2016 Oct;74(10):810-5. https://doi.org/10.1590/0004-282X20160119
  • 26 Lee CK, Chai CN, Capinpin SM, Ang A, Ng SY, Lee PL, et al. Evaluation of the Luminex ARIES HSV 1 and 2 Assay and comparison with the FTD Neuro 9 and In-house Real-Time PCR Assays for detecting Herpes Simplex Viruses. Ann Lab Med. 2018 Sep;38(5):440-5. https://doi.org/10.3343/alm.2018.38.5.440
  • 27 de Almeida SM, Borges CM, Santana LB, Golin G, Correa L, Kussen GB, et al. Validation of Mycobacterium tuberculosis real-time polymerase chain reaction for diagnosis of tuberculous meningitis using cerebrospinal fluid samples: a pilot study. Clin Chem Lab Med. 2019 Mar;57(4):556-64. https://doi.org/10.1515/cclm-2018-0524
  • 28 Méchaï F, Bouchaud O. Tuberculous meningitis: challenges in diagnosis and management. Rev Neurol (Paris). 2019 Sep-Oct;175(7-8):451-7. https://doi.org/10.1016/j.neurol.2019.07.007
  • 29 Kay AW, Fernández LG, Takwoingi Y, Eisenhut M, Detjen AK, Steingart KR, et al. Xpert MTB/RIF and Xpert MTB/RIF Ultra assays for active tuberculosis and rifampicin resistance in children. Cochrane Database Syst Rev. 2020 Aug;8:CD013359. https://doi.org/10.1002/14651858.CD013359.pub2
  • 30 Sharma K, Sharma M, Chaudhary L, Modi M, Goyal M, Sharma N, et al. Comparative evaluation of Xpert MTB/RIF assay with multiplex polymerase chain reaction for the diagnosis of tuberculous meningitis. Tuberculosis (Edinb). 2018 Dec;113:38-42. https://doi.org/10.1016/j.tube.2018.09.002
  • 31 Gupta R, Thakur R, Kushwaha S, Jalan N, Rawat P, Gupta P, et al. Isoniazid and rifampicin heteroresistant Mycobacterium tuberculosis isolated from tuberculous meningitis patients in India. Indian J Tuberc. 2018 Jan;65(1):52-6. https://doi.org/10.1016/j.ijtb.2017.08.005
  • 32 Micheletti VCD, Moreira JS, Ribeiro MO, Kritski AL, Braga JU. Drug-resistant tuberculosis in subjects included in the Second National Survey on Antituberculosis Drug Resistance in Porto Alegre, Brazil. J Bras Pneumol. 2014 Mar-Apr;40(2):155-63. https://doi.org/10.1590/S1806-37132014000200009
  • 33 Marques M, Cunha EAT, Evangelista MSN, Basta PC, Marques AMC, Croda J, et al. Resistência às drogas antituberculose na fronteira do Brasil com Paraguai e Bolívia. Rev Panam Salud Publica. 2017 Jan;41:e9. https://doi.org/10.26633/RPSP.2017.9
  • 34 Bahr NC, Marais S, Caws M, van Crevel R, Wilkinson RJ, Tyagi JS, et al. GeneXpert MTB/Rif to diagnose tuberculous meningitis: perhaps the first test but not the last. Clin Infect Dis. 2016 May;62(9):1133-5. https://doi.org/10.1093/cid/ciw083
  • 35 Bahr NC, Nuwagira E, Evans EE, Cresswell FV, Bystrom PV, Byamukama A, et al. Diagnostic accuracy of Xpert MTB/RIF Ultra for tuberculous meningitis in HIV-infected adults: a prospective cohort study. Lancet Infect Dis. 2018 Jan;18(1):68-75. https://doi.org/10.1016/S1473-3099(17)30474-7
  • 36 Zhang M, Xue M, He JQ. Diagnostic accuracy of the new Xpert MTB/RIF Ultra for tuberculosis disease: a preliminary systematic review and meta-analysis. Int J Infect Dis. 2020 Jan;90:35-45. https://doi.org/10.1016/j.ijid.2019.09.016
  • 37 Chin JH, Musubire AK, Morgan N, Pellinen J, Grossman S, Bhatt JM, et al. Xpert MTB/RIF Ultra for detection of mycobacterium tuberculosis in cerebrospinal fluid. J Clin Microbiol. 2019 Jun;57(6):e00249-19. https://doi.org/10.1128/JCM.00249-19
  • 38 WHO meeting report of a technical expert consultation: non-inferiority analysis of Xpert MTF/RIF Ultra compared to Xpert MTB/RIF. Geneva: World Health Organization; 2017 (WHO/HTM/TB/2017.04). Available from: https://apps.who.int/iris/bitstream/handle/10665/254792/WHO-HTM-TB-2017.04-eng.pdf?sequence=1&isAllowed=y
  • 39 Chiang SS, Khan FA, Milstein MB, Tolman AW, Benedetti A, Starke JR, et al. Treatment outcomes of childhood tuberculous meningitis: a systematic review and meta-analysis. Lancet Infect Dis. 2014 Oct;14(10):947-57. https://doi.org/10.1016/S1473-3099(14)70852-7
  • 40 Kumar K, Giribhattanavar P, Chandrashekar N, Patil S. Correlation of clinical, laboratory and drug susceptibility profiles in 176 patients with culture positive TBM in a tertiary neurocare centre. Diagn Microbiol Infect Dis. 2016 Dec;86(4):372-6. https://doi.org/10.1016/j.diagmicrobio.2016.09.018