Open Access
CC BY-NC-ND 4.0 · Arq Neuropsiquiatr 2020; 78(05): 290-300
DOI: 10.1590/0004-282X20200051
VIEW AND REVIEW

Neurological complications in patients with SARS-CoV-2 infection: a systematic review

Complicações neurológicas em pacientes infectados pelo SARS-CoV-2: uma revisão sistemática
1   University of Toronto, Toronto Western Hospital, Movement Disorders Centre, Toronto ON, Canada.
,
2   Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Neurology and Neurosurgery, São Paulo SP, Brazil.
,
3   Baylor College of Medicine, Department of Neurology, Houston TX, USA.
,
4   Universidade Federal do Paraná, Hospital de Clínicas, Neuroinfection Outclinic, Virology Laboratory, Medical Pathology Department, Curitiba PR, Brazil.
,
2   Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Neurology and Neurosurgery, São Paulo SP, Brazil.
,
5   Universidade Federal de Minas Gerais, Hospital das Clínicas, Movement Disorders Unit, Neurology Service, Internal Medicine Department, Belo Horizonte MG, Brazil.
,
6   Universidade Federal do Paraná, Hospital de Clínicas, Internal Medicine Department, Neurology Service, Curitiba PR, Brazil.
› Author Affiliations
Preview

ABSTRACT

Background: As the COVID-19 pandemic unfolds worldwide, different forms of reports have described its neurologic manifestations. Objective: To review the literature on neurological complications of SARS-CoV-2 infection. Methods: Literature search performed following systematic reviews guidelines, using specific keywords based on the COVID-19 neurological complications described up to May 10th, 2020. Results: A total of 43 articles were selected, including data ranging from common, non-specific symptoms, such as hyposmia and myalgia, to more complex and life-threatening conditions, such as cerebrovascular diseases, encephalopathies, and Guillain-Barré syndrome. Conclusion: Recognition of neurological manifestations of SARS-CoV-2 should be emphasized despite the obvious challenges faced by clinicians caring for critical patients who are often sedated and presenting other concurrent systemic complications.

RESUMO

Introdução: À medida que a pandemia da COVID-19 se desenvolve em todo o mundo, diferentes tipos de publicações descreveram suas manifestações neurológicas. Objetivo: Revisar a literatura sobre complicações neurológicas da infecção por SARS-CoV-2. Métodos: A pesquisa bibliográfica foi realizada seguindo diretrizes de revisões sistemáticas, usando palavras-chave específicas baseadas nas complicações neurológicas da COVID-19 descritas até 10 de maio de 2020. Resultados: Foram selecionados 43 artigos, incluindo descrições que variam de sintomas comuns e inespecíficos, como hiposmia e mialgia, a condições mais complexas e com risco de vida, como doenças cerebrovasculares, encefalopatias e síndrome de Guillain-Barré. Conclusão: O reconhecimento das manifestações neurológicas da SARS-CoV-2 deve ser enfatizado apesar dos óbvios desafios enfrentados pelos clínicos que cuidam de pacientes críticos, muitas vezes sedados e apresentando outras complicações sistêmicas concomitantes.



Publication History

Received: 27 April 2020

Accepted: 01 May 2020

Article published online:
13 June 2023

© 2020. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Li F. Structure, function, and evolution of coronavirus spike proteins. Ann Rev Virol. 2016 Sep;3(1):237-61. https://doi.org/10.1146/annurev-virology-110615-042301
  • 2 Bohmwald K, Gálvez NMS, Ríos M, Kalergis AM. Neurologic alterations due to respiratory virus infections. Front Cell Neurosci. 2018 Oct;12:386. https://doi.org/10.3389/fncel.2018.00386
  • 3 Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020 Apr;382:1708-20. https://doi.org/10.1056/NEJMoa2002032
  • 4 Tian S, Hu N, Lou J, Chen K, Kang X, Xiang Z, et al. Characteristics of COVID-19 infection in Beijing. J Infect. 2020 Apr;80(4):401-06. https://doi.org/10.1016/j.jinf.2020.02.018
  • 5 Ling L, So C, Shum HP, Chan PKS, Chan PKS, Lai CKC, Kandamby DH, et al. Critically ill patients with COVID-19 in Hong Kong: a multicentre retrospective observational cohort study. Crit Care Resusc. 2020 Apr 6. [Epub ahead of print]. PubMed PMID: 32248675.
  • 6 Kochi AN, Tagliari AP, Forleo GB, Fassini GM, Tondo C. Cardiac and arrhythmic complications in COVID-19 patients. J Cardiovasc Electrophysiol. 2020 May;31(5):1003-8. https://doi.org/10.1111/jce.14479
  • 7 Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020 Apr. https://doi.org/10.1001/jamaneurol.2020.1127
  • 8 Pleasure SJ, Green AJ, Josephson SA. The spectrum of neurologic disease in the severe acute respiratory syndrome coronavirus 2 pandemic infection: neurologists move to the frontlines. JAMA Neurol. 2020 Apr. [Epub ahead of print]. https://doi.org/10.1001/jamaneurol.2020.1065
  • 9 Papa SM, Brundin P, Fung VSC, Kang UJ, Burn DJ, Colosimo C, et al. Impact of the COVID-19 pandemic on Parkinson's disease and movement disorders. Mov Disord. 2020 Apr. [Epub ahead of print]. https://doi.org/10.1002/mds.28067
  • 10 Zhang Y, Xiao M, Zhang S, Xia P, Cao W, Jiang W, et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med. 2020 Apr;382(17):e38. https://doi.org/10.1056/NEJMc2007575
  • 11 Zhao H, Shen D, Zhou H, Liu J, Chen S. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol. 2020 May;19(5):383-4. https://doi.org/10.1016/S1474-4422(20)30109-5
  • 12 Helmich RC, Bloem BR. The impact of the COVID-19 pandemic on Parkinson's disease: hidden sorrows and emerging opportunities. J Parkinsons Dis. 2020;10(2):351-4. https://doi.org/10.3233/JPD-202038
  • 13 Anioplasty.org. Cardiac arrest deaths at home in new york city have increased by a startling 800% are some heart attack sufferers dying at home, afraid to call an ambulance for fear of contracting COVID-19 in the hospital? Available form: http://www.ptca.org/news/2020/0408_INCREASED_DEATHS_NYC.html
  • 14 Moher D, Liberati A, Tetzlaff J, Altman DG, the PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009 Jul;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097
  • 15 Jin H, Hong C, Chen S, Zhou Y, Wang Y, Mao L, et al. Consensus for prevention and management of coronavirus disease 2019 (COVID-19) for neurologists. Stroke Vasc Neurol. 2020;svn-2020-000382. http://dx.doi.org/10.1136/svn-2020-000382
  • 16 Beyrouti R, Adams ME, Benjamin L, Cohen H, Farmer SF, Goh YY, et al. Characteristics of ischaemic stroke associated with COVID-19. J Neurol Neurosurg Psychiatry. 2020 Apr; pii: jnnp-2020-323586. https://doi.org/10.1136/jnnp-2020-323586
  • 17 Oxley TJ, Mocco J, Majidi S, Kellner CP, Shoirah H, Singh IP, et al. Large-vessel stroke as a presenting feature of Covid-19 in the young. N Engl J Med. 2020 Apr. [Epub ahead of print]. https://doi.org/10.1056/NEJMc2009787
  • 18 González-Pinto T, Luna-Rodríguez A, Moreno-Estébanez A, Agirre-Beitia G, Rodríguez-Antigüedad A, Ruiz-Lopez M. Emergency room neurology in times of COVID-19: malignant ischemic stroke and SARS-COV2 infection. Eur J Neurol. 2020 Apr. [Epub ahead of print]. https://doi.org/10.1111/ene.14286
  • 19 Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol. 2020 Mar. [Epub ahead of print]. https://doi.org/10.1001/jamacardio.2020.1286
  • 20 Asadi-Pooya AA, Simani L. Central nervous system manifestations of COVID-19: A systematic review. J Neurol Sci. 2020 Apr 11;413:116832. https://doi.org/10.1016/j.jns.2020.116832
  • 21 Aggarwal G, Lippi G, Michael Henry B. Cerebrovascular disease is associated with an increased disease severity in patients with Coronavirus Disease 2019 (COVID-19): A pooled analysis of published literature. Int J Stroke. 2020 Apr 20:1747493020921664. https://doi.org/10.1177/1747493020921664
  • 22 Khosravani H, Rajendram P, Notario L, Chapman MG, Menon BK. Protected code stroke: hyperacute stroke management during the Coronavirus disease 2019 (COVID-19) pandemic. Stroke. 2020 Apr: STROKEAHA120029838. https://doi.org/10.1161/STROKEAHA.120.029838
  • 23 Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368:m1091. https://doi.org/10.1136/bmj.m1091
  • 24 Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020 Feb;395(10223):507-13. https://doi.org/10.1016/S0140-6736(20)30211-7
  • 25 Lu L, Xiong W, Liu D, Liu J, Yang D, Li N, et al. New-onset acute symptomatic seizure and risk factors in coronavirus Disease 2019: a retrospective multicenter study. Epilepsia. 2020 Apr. [Epub ahead of print]. https://doi.org/10.1111/epi.16524
  • 26 Helms J, Kremer S, Merdji H, Clere-Jehl R, Schenck M, Kummerlen C, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020 Apr. [Epub ahead of print]. https://doi.org/10.1056/NEJMc2008597
  • 27 Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology. 2020 Mar;201187. [Epub ahead of print]. https://doi.org/10.1148/radiol.2020201187
  • 28 Mizuguchi M, Yamanouchi H, Ichiyama T, Shiomi M. Acute encephalopathy associated with influenza and other viral infections. Acta Neurol Scand. 2007 Apr;115(4 Suppl):45-56. https://doi.org/10.1111/j.1600-0404.2007.00809.x
  • 29 Zanin L, Saraceno G, Panciani PP, et al. SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta Neurochir (Wien). 2020 May 4. https://doi.org/10.1007/s00701-020-04374-x
  • 30 Zhang T, Rodricks MB, Hirsh E. COVID-19-associated acute disseminated encephalomyelitis: a case report. medRxiv 2020;04.16.20068148. https://doi.org/10.1101/2020.04.16.20068148
  • 31 Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-coronavirus-2. Int J Infect Dis. 2020 May;94:55-8. [Epub ahead of print]. https://doi.org/10.1016/j.ijid.2020.03.062
  • 32 Ye M, Ren Y, Lv T. Encephalitis as a clinical manifestation of COVID-19. Brain Behav Immun. 2020 Apr;pii:S0889-1591(20)30465-7. [Epub ahead of print]. https://doi.org/10.1016/j.bbi.2020.04.017
  • 33 Duong L, Xu P, Liu A. Meningoencephalitis without respiratory failure in a young female patient with COVID-19 infection in Downtown Los Angeles, early April 2020. Brain Behav Immun. 2020 Apr. [Epub ahead of print]. https://doi.org/10.1016/j.bbi.2020.04.024
  • 34 Wong PF, Craik S, Newman P, Makan A, Srinivasan K, Crawford E, Dev D, Moudgil H, Ahmad N. Lessons of the month 1: A case of rhombencephalitis as a rare complication of acute COVID-19 infection. Clin Med (Lond). 2020 May 5. pii: clinmed.2020-0182. https://doi.org/10.7861/clinmed.2020-0182.
  • 35 Yin R, Feng W, Wang T, Chen G, Wu T, Chen D, et al. Concomitant neurological symptoms observed in a patient diagnosed with coronavirus disease 2019. J Med Virol. 2020 Apr. https://doi.org/10.1002/jmv.25888
  • 36 Xu J, Zhong S, Liu J, Li L, Li Y, Wu X, et al. Detection of severe acute respiratory syndrome coronavirus in the brain: potential role of the chemokine mig in pathogenesis. Clin Infect Dis. 2005 Oct;41(8):1089-96. https://doi.org/10.1086/444461
  • 37 Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020 Feb. [Epub ahead of print]. https://doi.org/10.1002/jmv.25728
  • 38 Wu Y, Xu X, Chen Z, Duan J, Hashimoto K, Yang L, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun. 2020 Mar; pii: S0889-1591(20)30357-3. [Epub ahead of print]. https://doi.org/10.1016/j.bbi.2020.03.031
  • 39 Wang L. Guillain-Barre Syndrome following viral infections: considerations for future treatment and research. Explor Res Hypothesis Med. 2018;3(1):4-5. https://doi.org/10.14218/ERHM.2017.00035
  • 40 Sedaghat Z, Karimi N. Guillain Barre syndrome associated with COVID-19 infection: A case report. J Clin Neurosci. 2020 Apr; pii: S0967-5868(20)30882-1. https://doi.org/10.1016/j.jocn.2020.04.062
  • 41 Virani A, Rabold E, Hanson T, Haag A, Elrufay R, Cheema T, et al. Guillain-Barré Syndrome associated with SARS-CoV-2 infection. IDCases. 2020 Apr;e00771. https://doi.org/10.1016/j.idcr.2020.e00771
  • 42 Toscano G, Palmerini F, Ravaglia S, Ruiz L, Invernizzi P, Cuzzoni MG, et al. Guillain-Barré Syndrome Associated with SARS-CoV-2. N Engl J Med. 2020 Apr. https://doi.org/10.1056/NEJMc2009191
  • 43 Alberti P, Beretta S, Piatti M, Karantzoulis A, Piatti ML, Santoro P, et al. Guillain-Barré syndrome related to COVID-19 infection. Neurol Neuroimmunol Neuroinflamm. 2020 Apr;7(4): pii: e741. https://doi.org/10.1212/NXI.20200051202000510741
  • 44 Gutiérrez-Ortiz C, Méndez A, Rodrigo-Rey S, San Pedro-Murillo E, Bermejo-Guerrero L, Gordo-Mañas R, et al. Miller Fisher Syndrome and polyneuritis cranialis in COVID-19. Neurology. 2020 Apr; pii: 10.1212/WNL.20200051202000519619. https://doi.org/10.1212/WNL.20200051202000519619
  • 45 DeVere R. Disorders of taste and smell. Continuum (Minneap Minn). 2017 Apr;23(2, Selected Topics in Outpatient Neurology):421-46. https://doi.org/10.1212/CON.20200051202000510463
  • 46 Welge-Lüssen A, Wolfensberger M. Olfactory disorders following upper respiratory tract infections. Adv Otorhinolaryngol. 2006;63:125-32. https://doi.org/10.1159/000093758
  • 47 Giacomelli A, Pezzati L, Conti F, Bernacchia D, Siano M, Oreni L, et al. Self-reported olfactory and taste disorders in SARS-CoV-2 patients: a cross-sectional study. Clin Infect Dis. 2020 Mar; pii: ciaa330. [Epub ahead of print]. https://doi.org/10.1093/cid/ciaa330
  • 48 Lechien JR, Chiesa-Estomba CM, De Siati DR, Horoi M, Le Bon SD, Rodriguez A, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. 2020 Apr. [Epub ahead of print]. https://doi.org/10.1007/s00405-020-05965-1
  • 49 Beltrán-Corbellini Á, Chico-García JL, Martínez-Poles J, Rodríguez-Jorge F, Natera-Villalba E, Gómez-Corral J, et al. Acute-onset smell and taste disorders in the context of Covid-19: a pilot multicenter PCR-based case-control Eur J Neurol. 2020 Apr. [Epub ahead of print]. https://doi.org/10.1111/ene.14273
  • 50 Gane SB, Kelly C, Hopkins C. Isolated sudden onset anosmia in COVID-19 infection. A novel syndrome? Rhinology. 2020 Apr. [Epub ahead of print]. https://doi.org/10.4193/Rhin20.114
  • 51 Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82(15):7264-75. https://doi.org/10.1128/JVI.00737-08
  • 52 Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020 Feb;12(1):8. https://doi.org/10.1038/s41368-020-0074-x
  • 53 Nataf S. An alteration of the dopamine synthetic pathway is possibly involved in the pathophysiology of COVID-19. J Med Virol. 2020 Apr. [Epub ahead of print]. https://doi.org/10.1002/jmv.25826
  • 54 Roy EP 3rd, Gutmann L. Myalgia. Neurol Clin. 1988 Aug;6(3):621-36.
  • 55 Jain P, Sehgal V. Prominent myalgia - an important clue in the diagnosis of a muscle disorder. World J Pediatr. 2017;13(3):282. https://doi.org/10.1007/s12519-017-0029-2
  • 56 Selva-O’Callaghan A, Alvarado-Cardenas M, Pinal-Fernández I, Trallero-Araguás E, Milisenda JC, Martínez MÁ, et al. Statin-induced myalgia and myositis: na update on pathogenesis and clinical recommendations. Expert Rev Clin Immunol. 2018 Mar;14(3):215-24. https://doi.org/10.1080/1744666X.2018.1440206
  • 57 Mehta R, Soares CN, Medialdea-Carrera R, da Silva MTT, Rosala-Hallas A, Jardim MR, et al. The spectrum of neurological disease associated with Zika and chigungunya viruses in adults in Rio de Janeiro, Brazil: A case series. Plos Negl Trop Dis. 2018 Feb;12(2):e0006212. https://doi.org/10.1371/journal.pntd.0006212
  • 58 Paliwal VK, Garg RK, Juyal R, Husain N, Verma R, Sharma PK, et al. Acute dengue vírus myositis: a report of seven patients of varying clinical severity including two cases with severe fulminante myositis. J Neurol Sci. 2011 Jan;300(1-2):14-8. https://doi.org/10.1016/j.jns.2010.10.022
  • 59 Davis LE, Kornfeld M, Daniels RS, Skehel JJ. Experimental influenza causes a non-permissive viral infection of brain, liver and muscle. J Neurovirol. 2000 Dec;6(6):529-36. https://doi.org/10.3109/13550280009091953
  • 60 Ding Q, Lu P, Fan Y, Xia Y, Liu M. The clinical characteristics of pneumonia patients coinfected with novel coronavirus and influenza vírus in Wuhan, China. J Med Virol. 2020 Mar. [Epub ahead of print]. https://doi.org/10.1002/jmv.25781
  • 61 Li LQ, Huang T, Wang YQ, Wang ZP, Liang Y, Huang TB, et al. COVID-19 patients clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol. 2020 Mar. [Epub ahead of print]. https://doi.org/10.1002/jmv.25757
  • 62 Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 Feb;395(10223):497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
  • 63 Jin M, Tong Q. Rhabdomyolysis as potential late complication associated with COVID-19. Emerg Infect Dis. 2020 Mar;26(7). https://doi.org/10.3201/eid2607.200445
  • 64 Han YN, Feng ZW, Sun LN, Ren XX, Wang H, Xue YM, et al. A comparative-descriptive analysis of clinical characteristics in 2019-coronoavirus-infected children and adults. J Med Virol. 2020 Apr. [Epub ahead of print]. https://doi.org/10.1002/jmv.25835
  • 65 Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020 Mar;pii:ciaa248. [Epub ahead of print]. https://doi.org/10.1093/cid/ciaa248
  • 66 Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020 Mar;11:995-8. https://doi.org/10.1021/acschemneuro.0c00122
  • 67 Brownlee W, Bourdette D, Broadley S, Killestein J, Ciccarelli O. Treating multiple sclerosis and neuromyelitis optica spectrum disorder during the COVID-19 pandemic. Neurology. 2020 Apr; pii: 10.1212/WNL.20200051202000519507. https://doi.org/10.1212/WNL.20200051202000519507
  • 68 International MG/COVID-19 Working Group, Jacob S, Muppidi S, Guidon A, Guptill J, Hehir M, et al. Guidance for the management of myasthenia gravis (MG) and Lambert-Eaton myasthenic syndrome (LEMS) during the COVID-19 pandemic. J Neurol Sci. 2020 May;412:116803. https://doi.org/10.1016/j.jns.2020.116803