Open Access
CC BY-NC-ND 4.0 · Arq Neuropsiquiatr 2020; 78(05): 269-276
DOI: 10.1590/0004-282X20200002
Article

Hardy-Weinberg Equilibrium in different mitochondrial haplogroups of four genes associated with neuroprotection and neurodegeneration

Equilíbrio de Hardy-Weinberg em diferentes haplogrupos mitocondriais de quatro genes associados à neuroproteção e neurodegeneração
1   Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil.
,
2   Universidade Federal de São Paulo, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo SP, Brazil.
,
1   Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil.
3   Bridges Genomics, São Paulo SP, Brazil.
,
4   Universidade Federal de São Paulo, Escola Paulista de Medicina, Divisão de Bioinformática, São Paulo SP, Brazil.
,
1   Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil.
› Institutsangaben
Preview

ABSTRACT

Background: Malfunctioning or damaged mitochondria result in altered energy metabolism, redox equilibrium, and cellular dynamics and is a central point in the pathogenesis of neurological disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and Amyotrophic Lateral Sclerosis. Therefore, it is of utmost importance to identify mitochondrial genetic susceptibility markers for neurodegenerative diseases. Potential markers include the respiratory chain enzymes Riboflavin kinase (RFK), Flavin adenine dinucleotide synthetase (FAD), Succinate dehydrogenase B subunit (SDHB), and Cytochrome C1 (CYC1). These enzymes are associated with neuroprotection and neurodegeneration. Objective: To test if variants in genes RFK, FAD, SDHB and CYC1 deviate from Hardy-Weinberg Equilibrium (HWE) in different human mitochondrial haplogroups. Methods: Sequence variants in genes RFK, FAD, SDHB and CYC1 of 2,504 non-affected individuals of the 1,000 genomes project were used for mitochondrial haplogroup assessment and HWE calculations in different mitochondrial haplogroups. Results: We show that RFK variants deviate from HWE in haplogroups G, H, L, V and W, variants of FAD in haplogroups B, J, L, U, and C, variants of SDHB in relation to the C, W, and A and CYC1 variants in B, L, U, D, and T. HWE deviation indicates action of selective pressures and genetic drift. Conclusions: HWE deviation of particular variants in relation to global populational HWE, could be, at least in part, associated with the differential susceptibility of specific populations and ethnicities to neurodegenerative diseases. Our data might contribute to the epidemiology and diagnostic/prognostic methods for neurodegenerative diseases.

RESUMO

Introdução: Mitocôndrias defeituosas ou danificadas resultam em alterações do metabolismo energético, equilíbrio redox e dinâmica celular e são, portanto, identificadas como o ponto central da patogênese em muitos distúrbios neurológicos, como a doença de Alzheimer, a doença de Parkinson, a doença de Huntington e a Esclerose Lateral Amiotrófica. Portanto, é de fundamental importância identificar marcadores de susceptibilidade genética mitocondrial para doenças neurodegenerativas. Entre os potenciais marcadores relevantes estão as enzimas da cadeia respiratória riboflavina quinase (RFK), flavina adenina dinucleotídeo sintetase (FAD), succinato desidrogenase subunidade B (SDHB) e citocromo C1 (CYC1). Estas enzimas estão associadas à neuroproteção e à neurodegeneração. Objetivo: Testar se variantes nas sequências dos genes RFK, FAD, SDHB e CYC1 desviam do Equilíbrio de Hardy-Weinberg (HWE) em diferentes haplogrupos mitocondriais humanos. Métodos: Neste trabalho utilizamos os variantes nos genes RFK, FAD, SDHB e CYC1 de sequências de 2.504 indivíduos não afetados do projeto de 1.000 genomas para o cálculo dos valores de HWE em diferentes haplogrupos mitocondriais. Resultados: As variantes de RFK desviam de HWE nos haplogrupos G, H, L, V e W, variantes de FAD nos haplogrupos B, J, L, U e C, variantes de SDHB em relação às variantes C, W e A e CYC1 em B, L, U, D e T. O desvio de HWE indica a ação de pressões seletivas e desvio genético. Conclusões: O desvio do HWE de variantes particulares em relação ao HWE populacional global poderia estar, pelo menos em parte, associado à suscetibilidade diferencial de populações e etnias específicas a doenças neurodegenerativas. Nossos dados podem contribuir para a epidemiologia e métodos diagnósticos/prognósticos para doenças neurodegenerativas.

Support:

Coordination for the Improvement of Higher Education Personnel (Capes), Foundation for Research Support of the State of São Paulo (Fapesp), and National Council for Scientific and Technological Development (CNPq).




Publikationsverlauf

Eingereicht: 22. November 2019

Angenommen: 09. Dezember 2019

Artikel online veröffentlicht:
13. Juni 2023

© 2020. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006 Oct;443(7113):787-95. https://doi.org/10.1038/nature05292
  • 2 Smith EF, Shaw PJ, De Vos KJ. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett. 2017 Jun;710:132933. https://doi.org/10.1016/j.neulet.2017.06.052
  • 3 Samuels DC, Carothers AD, Horton R, Chinnery PF. The Power to Detect Disease Associations with Mitochondrial DNA Haplogroups. Am J Hum Genet. 2006 Apr;78(4):713-20. https://doi.org/10.1086/502682
  • 4 Mitchell SL, Goodloe R, Brown-Gentry K, Pendergrass SA, Murdock DG, Crawford DC. Characterization of mitochondrial haplogroups in a large population-based sample from the United States. Hum Genet. 2014 Feb;133(7):861-8. https://doi.org/10.1007/s00439-014-1421-9
  • 5 Urzua-Traslavina CG. Relationship of Mitochondrial DNA Haplogroups with Complex Diseases. J Genet Genome Res. 2014;1(2). https://doi.org/10.23937/2378-3648/1410011
  • 6 Tatarenkov A, Avise JC. Rapid concerted evolution in animal mitochondrial DNA. Proc R Soc B Biol Sci. 2007 May;274(1619):1795-8. https://doi.org/10.1098/rspb.2007.0169
  • 7 DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. N Engl J Med. 2003 Jun;348(26):2656-68. https://doi.org/10.1056/NEJMra022567
  • 8 DiMauro S, Bonilla E, Davidson M, Hirano M, Schon EA. Mitochondria in neuromuscular disorders. Biochim Biophys Acta. 1998 Aug;1366(1-2):199-210. https://doi.org/10.1016/s0005-2728(98)00113-3
  • 9 Marashly ET, Bohlega SA. Riboflavin has neuroprotective potential: focus on Parkinson’s disease and migraine. Front Neurol. 2017 Jul;8. https://doi.org/10.3389/fneur.2017.00333
  • 10 Udhayabanu T, Manole A, Rajeshwari M, Varalakshmi P, Houlden H, Ashokkumar B. Riboflavin responsive mitochondrial dysfunction in neurodegenerative diseases. J Clin Med. 2017;6(5):52. https://doi.org/10.3390/jcm6050052
  • 11 Mao P, Ardeshiri A, Jacks R, Yang S, Hurn PD, Alkayed NJ. Mitochondrial mechanism of neuroprotection by CART. Eur J Neurosci. 2007 Aug;26(3):624-32. https://doi.org/10.1111/j.1460-9568.2007.05691.x
  • 12 Yu Z, Zhang Y, Liu N, et al. Roles of neuroglobin binding to mitochondrial complex III subunit cytochrome c1 in oxygen-glucose deprivation-induced neurotoxicity in primary neurons. Mol Neurobiol. 2016;53(5):3249-57. https://doi.org/10.1007/s12035-015-9273-4
  • 13 Weng T-Y, Tsai S-YA, Su T-P. Roles of sigma-1 receptors on mitochondrial functions relevant to neurodegenerative diseases. J Biomed Sci. 2017 Sep;24(1):74. https://doi.org/10.1186/s12929-017-0380-6
  • 14 Lin J, Diamanduros A, Chowdhury SA, Scelsa S, Latov N, Sadiq SA. Specific electron transport chain abnormalities in amyotrophic lateral sclerosis. J Neurol. 2009 Feb;256(5):774-82. https://doi.org/10.1007/s00415-009-5015-8
  • 15 Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et al. An integrated map of structural variation in 2,504 human genomes. Nature. 2015 Sep;526(7571):75-81. https://doi.org/10.1038/nature15394
  • 16 The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015 Sep;526(7571):68-74. https://doi.org/10.1038/nature15393
  • 17 The 1000 Genomes Project Consortium, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, et al. A map of human genome variation from population-scale sequencing. Nature. 2010 Oct;467(7319):1061-73. https://doi.org/10.1038/nature09534
  • 18 The 1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012 Nov;491(7422):56-65 https://doi.org/10.1038/nature11632
  • 19 Gazal S, Sahbatou M, Babron M-C, Génin E, Leutenegger A-L. High level of inbreeding in final phase of 1000 Genomes Project. Sci Rep. 2015;5:17453. https://doi.org/10.1038/srep17453
  • 20 van Oven M, Kayser M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat. 2009 Feb;30(2):E386-E394. https://doi.org/10.1002/humu.20921
  • 21 Hunt SE, McLaren W, Gil L, Thormann A, Schuilenburg H, Sheppard D, et al. Ensembl variation resources. Database. 2018 Nov;2018. https://doi.org/10.1093/database/bay119
  • 22 Kitts A, Sherry S. The Single Nucleotide Polymorphism Database (DbSNP) of nucleotide sequence variation. Bethesda (MD): National Center for Biotechnology Information (US); 2011. Available from: https://www.ncbi.nlm.nih.gov/books/NBK21088/
  • 23 Hardy GH. Mendelian proportions in a mixed population. Science. 1908 Jul;28(706):49-50. https://doi.org/10.1126/science.28.706.49
  • 24 Weinberg W. Über den Nachweis der Vererbung beim Menschen [On the demonstration of heredity in man]. Naturkunde Wurttemberg. 1908;64:368-82.
  • 25 Weissensteiner H, Pacher D, Kloss-Brandstätter A, Forer L, Specht G, Bandelt HJ, et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 2016 Jul;44(W1):W58-W63. https://doi.org/10.1093/nar/gkw233
  • 26 Rishishwar L, Jordan IK. Implications of human evolution and admixture for mitochondrial replacement therapy. BMC Genomics. 2017 Feb;18(1):140. https://doi.org/10.1186/s12864-017-3539-3
  • 27 Ienco EC, Simoncini C, Orsucci D, Petrucci L, Filosto M, Mancuso M, et al. May “Mitochondrial Eve” and mitochondrial haplogroups play a role in neurodegeneration and Alzheimer’s disease? Int J Alzheimers Dis. 2011 https://doi.org/10.4061/2011/709061
  • 28 Marcuello A, Martínez-Redondo D, Dahmani Y, Casajús JÁ, Ruiz-Pesiniab E, Montoya J, et al. Human mitochondrial variants influence on oxygen consumption. Mitochondrion. 2009 Feb;9(1):27-30. https://doi.org/10.1016/j.mito.2008.10.002
  • 29 van der Walt JM, Nicodemus KK, Martin ER, Schmechel DE, Pericak-Vance MA, Vance JM, et al. Mitochondrial Polymorphisms Significantly Reduce the Risk of Parkinson disease. Am J Hum Genet. 2003 Apr;72(4):804-11. https://doi.org/10.1086/373937
  • 30 Pyle A, Foltynie T, Tiangyou W, Lambert C, Keers SM, Allcock LM, et al. Mitochondrial DNA haplogroup cluster UKJT reduces the risk of PD. Ann Neurol. 2005 Apr;57(4):564-67. https://doi.org/10.1002/ana.20417
  • 31 Ghezzi D, Marelli C, Achilli A, Goldwurm S, Pezzoli G, Barone P, et al. Mitochondrial DNA haplogroup K is associated with a lower risk of Parkinson’s disease in Italians. Eur J Hum Genet. 2005;13(6):748-52. https://doi.org/10.1038/sj.ejhg.5201425
  • 32 Giacchetti M, Monticelli A, De Biase I, Pianese L, Turano M, Filla A, et al. Mitochondrial DNA haplogroups influence the Friedreich’s ataxia phenotype. J Med Genet. 2004;41(4):293-5. https://doi.org/10.1136/jmg.2003.015289
  • 33 Mancuso M, Kiferle L, Petrozzi L, Nestia C, Rocchia A, Ceravolo R, et al. Mitochondrial DNA haplogroups do not influence the Huntington’s disease phenotype. Neurosci Lett. 2008 Oct;444(1):83-6. https://doi.org/10.1016/j.neulet.2008.08.013
  • 34 Arning L, Haghikia A, Taherzadeh-Fard E, Saft C, Andrich J, Pula B, et al. Mitochondrial haplogroup H correlates with ATP levels and age at onset in Huntington disease. J Mol Med. 2010 Jan;88(4):431-6. https://doi.org/10.1007/s00109-010-0589-2
  • 35 Niemi A-K, Moilanen JS, Tanaka M, Hervonen A, Hurme M, Lehtimäki T, et al. A combination of three common inherited mitochondrial DNA polymorphisms promotes longevity in Finnish and Japanese subjects. Eur J Hum Genet. 2005 Feb;13(2):166-70. https://doi.org/10.1038/sj.ejhg.5201308
  • 36 Zhang J, Asin-Cayuela J, Fish J, Michikawa Y, Bonafé M, Olivieri F, et al. Strikingly higher frequency in centenarians and twins of mtDNA mutation causing remodeling of replication origin in leukocytes. Proc Natl Acad Sci U S A. 2003 Feb;100(3):1116-21. https://doi.org/10.1073/pnas.242719399
  • 37 Chagnon P, Gee M, Filion M, Robitaille Y, Belouchi M, Gauvreau D. Phylogenetic analysis of the mitochondrial genome indicates significant differences between patients with Alzheimer disease and controls in a French-Canadian founder population. Am J Med Genet. 1999 Jul;85(1):20-30. https://doi.org/10.1002/(sici)1096-8628(19990702)85:1%3C20::aid-ajmg6%3E3.0.co;2-k
  • 38 van der Walt JM, Dementieva YA, Martin ER, Scott WK, Nicodemus KK, Kronera CC, et al. Analysis of European mitochondrial haplogroups with Alzheimer disease risk. Neurosci Lett. 2004 Jul;365(1):28-32. https://doi.org/10.1016/j.neulet.2004.04.051
  • 39 Fesahat F, Houshmand M, Panahi MSS, Gharagozli K, Mirzajani F. Do haplogroups H and U act to increase the penetrance of Alzheimer’s disease? Cell Mol Neurobiol. 2007 May;27(3):329-34. https://doi.org/10.1007/s10571-006-9126-9
  • 40 Carrieri G, Bonafè M, De Luca M, Rose G, Varcasia O, Bruni A, et al. Mitochondrial DNA haplogroups and APOE4 allele are non-independent variables in sporadic Alzheimer’s disease. Hum Genet. 2001 Mar;108(3):194-8. https://doi.org/10.1007/s004390100463
  • 41 Elson JL, Herrnstadt C, Preston G, Thal L, Morris CM, Edwardson JA, et al. Does the mitochondrial genome play a role in the etiology of Alzheimer’s disease? Hum Genet. 2006 Jan;119(3):241-54. https://doi.org/10.1007/s00439-005-0123-8
  • 42 Takasaki S. Mitochondrial haplogroups associated with Japanese Alzheimer’s patients. J Bioenerg Biomembr. 2009;41(5):407-10. https://doi.org/10.1007/s10863-009-9240-8
  • 43 Maruszak A, Canter JA, Styczyńska M, Żekanowski C, Barcikowska M. Mitochondrial haplogroup H and Alzheimer’s disease--is there a connection? Neurobiol Aging. 2009 Nov;30(11):1749-55. https://doi.org/10.1016/j.neurobiolaging.2008.01.004
  • 44 Mancuso M, Conforti FL, Rocchi A, Tessitore A, Muglia M, Tedeschi G, et al. Could mitochondrial haplogroups play a role in sporadic amyotrophic lateral sclerosis? Neurosci Lett. 2004 Nov;371(2-3):158-62. https://doi.org/10.1016/j.neulet.2004.08.060
  • 45 Chinnery PF, Mowbray C, Elliot H, Elson JL, Nixon H, Hartley J, et al. Mitochondrial DNA haplogroups and amyotrophic lateral sclerosis. Neurogenetics. 2007 Jan;8(1):65-7. https://doi.org/10.1007/s10048-006-0066-9
  • 46 Muir R, Diot A, Poulton J. Mitochondrial content is central to nuclear gene expression: Profound implications for human health. BioEssays News Rev Mol Cell Dev Biol. 2016 Feb;38(2):150-6. https://doi.org/10.1002/bies.201500105
  • 47 Reinhardt K, Dowling DK, Morrow EH. Mitochondrial replacement, evolution, and the clinic. Science. 2013 Sep;341(6152):1345-6. https://doi.org/10.1126/science.1237146
  • 48 Boengler K, Heusch G, Schulz R. Mitochondria in postconditioning. Antioxid Redox Signal. 2011 Jan;14(5):863-80. https://doi.org/10.1089/ars.2010.3309
  • 49 Ishida T. Effects of point mutation on enzymatic activity: correlation between protein electronic structure and motion in chorismate mutase reaction. J Am Chem Soc. 2010 Apr;132(20):7104-8. https://doi.org/10.1021/ja100744h