CC BY-NC-ND 4.0 · Arq Neuropsiquiatr 2020; 78(02): 103-111
DOI: 10.1590/0004-282X20190155
Article

Demyelination in experimental intraventricular neurocysticercosis

Desmielinização na neurocisticercose intraventricular experimental
1   Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia GO, Brazil.
,
2   Universidade Federal de Goiás, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Instituto de Patologia Tropical e Saúde Pública, Goiânia GO, Brazil.
,
2   Universidade Federal de Goiás, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Instituto de Patologia Tropical e Saúde Pública, Goiânia GO, Brazil.
,
3   Universidade de Rio Verde, Faculdade de Medicina, Aparecida de Goiânia GO, Brazil.
,
4   Universidade Federal de Goiás, Faculdade de Medicina, Goiânia GO, Brazil.
,
1   Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia GO, Brazil.
,
1   Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia GO, Brazil.
› Author Affiliations

Abstract

Neurocysticercosis (NCC) is classified as a neglected tropical disease, which affects mainly Latin America and Africa in spite of some reports in North America and Europe. NCC represents the cause of up to 30% of the reported cases of epilepsy in endemic countries. The NCC injuries present direct relation to the development stage, location, and number of parasites as well as to the host immune response. This study aimed the characterization of the inflammatory response and tissue injuries by means of the analyses of the periventricular and parenchymatous demyelination through the experimental intraventricular NCC infection. Therefore, BALB/c mice were submitted to experimental NCC inoculation with Taenia crassiceps cysticerci. Their brains were removed at 7, 30, 60, and 90 days after the inoculation (DAI), and analyzed after staining with hematoxylin and eosin (HE), Luxol Fast Blue, and Nissl. It was possible to observe ventriculomegaly, inflammatory infiltration composed by polymorphonuclear and mononuclear cells, and foamy macrophages. The presence of inflammatory cells was associated with neurodegeneration detected by the areas with demyelination observed initially in the periventricular area and lately in the parenchyma. In conclusion, the presence of cysticerci and the consequent inflammation were able to promote initial periventricular demyelination followed by parenchymatous demyelination as the infection progressed.

Resumo

A neurocisticercose (NCC) é classificada como uma doença tropical negligenciada que afeta principalmente a América Latina e a África, apesar de alguns relatos na América do Norte e na Europa. A NCC é responsável por cerca de 30% dos casos de epilepsia em países endêmicos. Estas lesões parecem ter estreita relação com o estádio de desenvolvimento, com a localização e o número de parasitas, bem como a resposta imune do hospedeiro. O presente estudo objetivou caracterizar a resposta de células inflamatórias e as lesões teciduais pela análise da desmielinização periventricular e parenquimatosa ao longo da infecção experimental de NCC intraventricular. Para tanto, camundongos BALB/c foram submetidos a NCC experimental através da inoculação de cisticercos de Taenia crassiceps. O encéfalo foi retirado aos 7, 30, 60 e 90 dias após inoculação (DAI) e analisado após coloração por Hematoxilina e Eosina (HE), Luxol Fast Blue e Nissl. Observou-se ventriculomegalia, processo de infiltração inflamatório composto por células polimorfonucleares, mononucleares e macrófagos espumosos. A presença de células inflamatórias foi associada com neurodegeneração, observada pelas áreas de desmielinização que foram inicialmente periventricular e mais tardiamente no parênquima. Em conclusão, observa-se que a presença dos cisticercos e a inflamação foram capazes de promover desmielinização periventricular inicial e parenquimatosa conforme houve progressão tardia da infecção.



Publication History

Received: 27 August 2019

Accepted: 19 September 2019

Article published online:
13 June 2023

© 2019. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Laranjo-González M, Devleesschauwer B, Trevisan C, Allepuz A, Sotiraki S, Abraham A, et al. Epidemiology of taeniosis/cysticercosis in Europe, a systematic review: Western Europe. Parasit Vectors. 2017 Jul;10(1):349. https://doi.org/10.1186/s13071-017-2280-8
  • 2 WHO. World Health Organization. Developing surveillance indicators to measure global progress against pork tapeworm [Internet]. Available from: <http://www.who.int/taeniasis/en/>
  • 3 Tellez-Zenteno JF, Hernandez-Ronquillo L. Epidemiology of neurocysticercosis and epilepsy, is everything described? Epilepsy Behav. 2017 Nov;76:143-50. https://doi.org/10.1016/j.yebeh.2017.01.030
  • 4 Fleury A, Cardenas G, Adalid-Peralta L, Fragoso G, Sciutto E. Immunopathology in Taenia solium neurocysticercosis. Parasite Immunol. 2016 Mar;38(3):147-57. https://doi.org/10.1111/pim.12299
  • 5 Sotelo J, Del Brutto OH. Review of neurocysticercosis. Neurosurg Focus. 2002;12(6):1-6. https://doi.org/10.3171/foc.2002.12.6.2
  • 6 Benedeti MR, Falavigna DLM, Falavigna-Guilherme AL, Araújo SM. Perfil clínico-epidemiológico de pacientes com NCC atendidos no Hospital Universitário Regional de Maringá, Paraná, Brasil. Arq Neuropsiquiatr. 2007;65(1):124-9. http://dx.doi.org/10.1590/S0004-282X2007000100025
  • 7 Cardona AE, Restrepo BI, Jaramillo JM, Teale JM. Development of an animal model for neurocysticercosis: immune response in the central nervous system is characterized by a predominance of gamma delta T cells. J. Immunol. 1999 Jan;162(2):995-1002.
  • 8 Matos-Silva H, Reciputti BP, Paula EC, Oliveira AL, Moura VB, Vinaud MC, et al. Experimental encephalitis caused by Taenia crassiceps cysticerci in mice. Arq Neuropsiquiatr. 2012 Apr;70(4):287-92. https://doi.org/10.1590/s0004-282x2012005000010
  • 9 Verastegui MR, Mejia A, Clark T, Gavidia CM, Mamani J, Ccopa F, et al. Novel Rat Model for Neurocysticercosis Using Taenia solium. Am J Pathol. 2015 Aug;185(8):2259-68. https://doi.org/10.1016/j.ajpath.2015.04.015
  • 10 Fleury A, Trejo A, Cisneros H, García-Navarrete R, Villalobos N, Hernández M, et al. Taenia solium: development of an experimental model of porcine neurocysticercosis. PLoS Negl Trop Dis. 2015 Aug;9(8):e0003980. https://doi.org/10.1371/journal.pntd.0003980
  • 11 Sciutto E, Chavarria A, Fragoso G, Fleury A, Larralde C. The immune response in Taenia solium cysticercosis: protection and injury. Parasite Immunol. 2007 Dec;29(12):621-36. https://doi.org/10.1111/j.1365-3024.2007.00967.x
  • 12 Terrazas LI, Bojalil R, Govezensky T, Larralde C. Shift from an early protective Th1-type immune response to a late permissive Th2-type response in murine cysticercosis (Taenia crassiceps). J Parasitol. 1998 Feb;84(1):74-81.
  • 13 Song L, Leung C, Schindler C. Lymphocytes are important in early atherosclerosis. J Clin Invest. 2001 Jul;108(2):251-59. https://doi.org/10.1172/JCI11380
  • 14 Lassmann H. Multiple sclerosis: is there neurodegeneration independent from inflammation? J Neurol Sci. 2007 Aug;259(1-2):3-6. https://doi.org/10.1016/j.jns.2006.08.016
  • 15 Steinman L. Multiple sclerosis: a two-stage diseases. Nat Immunol. 2001 Sep;2(9):762-4. https://doi.org/10.1038/ni0901-762
  • 16 Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative Stress and Neurodegenerative Diseases: A Review of Upstream and Downstream Antioxidant Therapeutic Options. Curr Neuropharmacol. 2009 Mar;7(1):65-74. https://doi.org/10.2174/157015909787602823
  • 17 Ferretti G, Bacchetti T. Peroxidation of lipoproteins in multiple sclerosis. J Neurol Sci. 2011 Dec;311(1-2):92-7. https://doi.org/10.1016/j.jns.2011.09.004
  • 18 Oliveira SR, Kallaur AP, Simão AN, Morimoto HK, Lopes J, Panis C, et al. Oxidative stress in multiple sclerosis patients in clinical remission: association with the expanded disability status scale. J Neurol Sci. 2012 Oct;321(1-2):49-53. https://doi.org/10.1016/j.jns.2012.07.045
  • 19 Ohno N, Ikenaka K. Axonal and neuronal degeneration in myelin diseases. Neurosci Res. 2019 Feb;139:48-57. https://doi.org/10.1016/j.neures.2018.08.013
  • 20 Lassmann H, Lucchinetti CF. Cortical demyelination in CNS inflammatory demyelinating diseases. Neurology. 2008 Jan;70(5):332-33. https://doi.org/10.1212/01.wnl.0000298724.89870.d1
  • 21 Dutta R, Chang A, Doud MK, Kidd GJ, Ribaudo MV, Young EA, et al. Demyelination causes synaptic alterations in hippocampi from multiple sclerosis patients. Ann Neurol. 2011 Mar;69(3):445-54. https://doi.org/10.1002/ana.22337
  • 22 Smith KJ, Lassmann H. The role of nitric oxide in multiple sclerosis. Lancet Neurol. 2002 Aug;1(4):232-41.
  • 23 Haider L, Zrzavy T, Hametner S, Höftberger R, Bagnato F, Grabner G, et al. The topography of demyelination and neurodegeneration in the multiple sclerosis brain. Brain. 2016 Mar;139(Pt 3):807-15. https://doi.org/10.1093/brain/awv398
  • 24 Kornek B, Storch MK, Weissert R, Wallstroem E, Stefferl A, Olsson T, et al. Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol. 2000 Jul;157(1):267-76. https://doi.org/10.1016/S0002-9440(10)64537-3
  • 25 Lassmann H, Brück W, Lucchinetti C. Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med. 2001 Mar;7(3):115-21.
  • 26 Lucchinetti CF, Popescu BF, Bunyan RF, Moll NM, Roemer SF, Lassmann H, et al. Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med. 2011 Dec;365(23):2188-97. https://doi.org/10.1056/NEJMoa1100648
  • 27 Vinaud MC, Lino R de S Jr, Bezerra JC. Taenia crassiceps organic acids detected in cysticerci. Exp Parasitol. 2007 Aug;116(4):335-9. https://doi.org/10.1016/j.exppara.2007.01.013
  • 28 de Lange A, Mahanty S, Raimondo JV. Model systems for investigating disease processes in neurocysticercosis. Parasitology. 2019 Apr;146(5):553-62. https://doi.org/10.1017/S0031182018001932
  • 29 Lino Junior RS, Ribeiro PM, Antonelli EJ, Faleiros ACG, Terra AS, Reis MA, et al. Características evolutivas do Cysticercus cellulosae no encéfalo e no coração humanos. Rev Soc Bras Med Trop 2002 Nov-Dec;35(6):617-22. http://dx.doi.org/10.1590/S0037-86822002000600012
  • 30 Shook BA, Lennington JB, Acabchuk RL, Halling M, Sun Y, Peters J, et al. Ventriculomegaly associated with ependymal gliosis and declines in barrier integrity in the aging of human and mouse brain. Aging Cell. 2014 Apr;13(2):340-350. https://doi.org/10.1111/acel.12184
  • 31 Bernardinelli Y, Magistretti PJ, Chatton JY. Astrocytes generate Na+ mediated metabolic waves. Proc Natl Acad Sci U S A. 2004 Oct;101(41):14937-42. https://doi.org/10.1073/pnas.0405315101
  • 32 Melo RC, Dvorak AM. Lipid body-phagosome interaction in macrophages during infectious diseases: host defense or pathogen survival strategy PLoS Pathog. 2012;8(7):e1002729. https://doi.org/10.1371/journal.ppat.1002729
  • 33 Psachoulia K, Chamberlain KA, Heo D, Davis SE, Paskus JD, Nanescu SE, Huang JK. IL4I1 augments CNS remyelination and axonal protection by modulating T cell driven inflammation. Brain. 2016;139(12):3121-36. https://doi.org/10.1093/brain/aww254
  • 34 Maizels RM, Bundy DA, Selkirk ME, Smith DF, Anderson RM. Immunological modulation and evasion by helminth parasites in human populations. Nature. 1993 Oct; 365(6449):797-805. https://doi.org/10.1038/365797a0
  • 35 Gonzales I, Rivera JT, Garcia HH, Cysticercosis Working Group in Peru. Pathogenesis of Taenia solium taeniasis and cysticercosis. Parasite Immunol. 2016 Mar;38(3):136-46. https://doi.org/10.1111/pim.12307
  • 36 Rodriguez-Sosa M, David JR, Bojalil R, Satoskar AR, Terrazas LI. Cutting edge: susceptibility to the larval stage of the helminth parasite Taenia crassiceps is mediated by Th2 response induced via STAT6 signaling. J Immunol. 2002 Apr;168(7):3135-9. https://doi.org/10.4049/jimmunol.168.7.3135
  • 37 Toenjes SA, Spolski RJ, Mooney KA, Kuhn RE. The systemic immune response of BALB/c mice infected with larval Taenia crassiceps is a mixed Th1/Th2-type response. Parasitology. 1999 Jun;118(Pt 6):623-33. https://doi.org/10.1017/s0031182099004370
  • 38 White AC Jr, Robinson P, Kuhn R. Taenia solium cysticercosis: host-parasite interactions and the immune response. Chem Immunol. 1997;66:209-230.
  • 39 Lin KY, Chen KM, Lan KP, Lee HH, Lai SC. Alterations of myelin proteins in inflammatory demyelination of BALB/c mice caused by Angiostrongylus cantonensis. Vet Parasitol. 2010 Jul;171(1-2):74-80. https://doi.org/10.1016/j.vetpar.2010.03.019
  • 40 Lichtenbergová L1, Lassmann H, Jones MK, Kolářová L, Horák P. Trichobilharzia regenti: host immune response in the pathogenesis of neuroinfection in mice. Exp Parasitol. 2011 Aug;128(4):328-35. https://doi.org/10.1016/j.exppara.2011.04.006