Subscribe to RSS

DOI: 10.1590/0004-282X20180111
Complex proteinopathies and neurodegeneration: insights from the study of transmissible spongiform encephalopathies
Proteinopatías complejas y neurodegeneración: conocimientos obtenidos del estudio de las encefalopatías espongiformes transmisibles
ABSTRACT
Protein misfolding diseases are usually associated with deposits of single “key” proteins that somehow drive the pathology; β-amyloid and hyperphosphorylated tau accumulate in Alzheimer's disease, α-synuclein in Parkinson's disease, or abnormal prion protein (PrPTSE) in transmissible spongiform encephalopathies (TSEs or prion diseases). However, in some diseases more than two proteins accumulate in the same brain. These diseases might be considered “complex” proteinopathies. We have studied models of TSEs (to explore deposits of PrPTSE and of “secondary proteins”) infecting different strains and doses of TSE agent, factors that control incubation period, duration of illness and histopathology. Model TSEs allowed us to investigate whether different features of histopathology are independent of PrPTSE or appear as a secondary result of PrPTSE. Better understanding the complex proteinopathies may help to explain the wide spectrum of degenerative diseases and why some overlap clinically and histopathologically. These studies might also improve diagnosis and eventually even suggest new treatments for human neurodegenerative diseases.
RESUMEN
La acumulación de proteínas con conformación anormal es observada en numerosas enfermedades degenerativas del sistema nervioso. Tales enfermedades están generalmente asociadas con el depósito de una proteína que es importante para la patogenia de la enfermedad; amiloide-β e hiperfosforilación de tau en la Enfermedad de Alzheimer, α-sinucleína en la Enfermedad de Parkinson, y acúmulo de proteína prion anormal (PrPTSE) en las encefalopatías espongiformes transmisibles (EET). Sin embargo, en algunas enfermedades más de dos proteínas se acumulan en el sistema nervioso central. Estas enfermedades pueden considerarse “proteinopatías complejas”. Hemos estudiado varios modelos de EET para analizar los depósitos de PrPTSE y la posible acumulación de otras proteínas (que podríamos llamar “proteínas secundarias”). La relación entre proteínas mal plegadas y neurodegeneración no es claro. La mayor parte de las enfermedades neurodegenerativas evolucionan por décadas; por lo tanto los acúmulos proteicos podrían generar diferentes efectos patogénicos en los diferentes estadios de la enfermedad. Alternativamente los acúmulos proteicos podrían ser el resultado de alteraciones del sistema nervioso y no su causa. Dado que la etiología de las ETT es relativamente bien conocido y es atribuido a infección por agentes autoreplicantes que generan malformacion de la proteína prion normal (la isoforma patologica, PrPTSE, propuesta como el agente infeccioso) hemos estudiado varios modelos animales, cepas de agente infectante y dosis del agente causal de ETT. Estos factores controlan el período de incubación, duración de la enfermedad e histopatología. Los modelos animales estudiados nos han permitido investigar si las diferentes características histopatológicas son independientes de PrPTSE o podrían ser secundarias a la acumulación de la misma. Un mejor conocimiento de las proteinopatías complejas podría ayudar a analizar el espectro de enfermedades degenerativas y a su vez, investigar el motivo de la superposición clínico-patológico en algunas de ellas. Estos estudios podrían ayudar en el diagnóstico y eventualmente sugerir nuevas posibles terapéuticas para las enfermedades neurodegenerativas humanas.
Disclaimer
The opinions expressed in this literature review are those of the authors and do not bind or obligate the US FDA.
Publication History
Received: 18 June 2018
Accepted: 08 August 2018
Article published online:
22 August 2023
© 2023. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Ballatore C, Lee VM, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat Rev Neurosci. 2007 Sep;8(9):663-72. https://doi.org/10.1038/nrn2194
- 2 Kirby L, Agarwal S, Graham JF, Goldmann W, Gill AC. Inverse correlation of thermal lability and conversion efficiency for five prion protein polymorphic variants. Biochem. 2010;(49):1448-59. https://doi.org/10.1021/bi901855z
- 3 Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science. 1982 Apr;216(4542):136-44. https://doi.org/10.1126/science.6801762
- 4 Vlad C, Iurascu MI, Slamnoiu S, Hengerer B, Przybylski M. Characterization of oligomerization-aggregation products of neurodegenerative target proteins by ion mobility mass spectrometry. Methods Mol Biol. 2012;896:399-412. https://doi.org/10.1007/978-1-4614-3704-8_27
- 5 Brody AH, Strittmatter SM. Synaptotoxic signaling by amyloid beta oligomers in Alzheimer's disease through prion protein and mGluR5. Adv Pharmacol. 2018;82(82):293-323. https://doi.org/10.1016/bs.apha.2017.09.007
- 6 Um JW, Nygaard HB, Heiss JK, Kostylev MA, Stagi M, Vortmeyer A et al. Alzheimer amyloid-β oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat Neurosci. 2012 Sep;15(9):1227-35. https://doi.org/10.1038/nn.3178
- 7 Giasson BI, Forman MS, Higuchi M, Golbe LI, Graves CL, Kotzbauer PT et al. Initiation and synergistic fibrillization of tau and alpha-synuclein. Science. 2003 Apr;300(5619):636-40. https://doi.org/10.1126/science.1082324
- 8 Tokutake T, Kasuga K, Yajima R, Sekine Y, Tezuka T, Nishizawa M et al. Hyperphosphorylation of Tau induced by naturally secreted amyloid-β at nanomolar concentrations is modulated by insulin-dependent Akt-GSK3β signaling pathway. J Biol Chem. 2012 Oct;287(42):35222-33. https://doi.org/10.1074/jbc.M112.348300
- 9 Vasconcelos B, Stancu IC, Buist A, Bird M, Wang P, Vanoosthuyse A et al. Heterotypic seeding of Tau fibrillization by pre-aggregated Abeta provides potent seeds for prion-like seeding and propagation of Tau-pathology in vivo. Acta Neuropathol. 2016 Apr;131(4):549-69. https://doi.org/10.1007/s00401-015-1525-x
- 10 Habib R, Noureen N, Nadeem N. Decoding common features of neurodegenerative disorders: from differentially expressed genes to pathways. Curr Genomics. 2018 May;19(4):300-12. https://doi.org/10.2174/1389202918666171005100549
- 11 Perez-Nievas BG, Stein TD, Tai HC, Dols-Icardo O, Scotton TC, Barroeta-Espar I et al. Dissecting phenotypic traits linked to human resilience to Alzheimer's pathology. Brain. 2013 Aug;136(Pt 8):2510-26. https://doi.org/10.1093/brain/awt171
- 12 Diack AB, Alibhai JD, Barron R, Bradford B, Piccardo P, Manson JC. (Review). Insights into mechanisms of chronic neurodegeneration. Int J Mol Sci. 2016 Jan;17(1):pii.E82. https://doi.org/10.3390/ijms17010082
- 13 De Lucia C, Rinchon A, Olmos-Alonso A, Riecken K, Fehse B, Boche D et al. Microglia regulate hippocampal neurogenesis during chronic neurodegeneration. Brain Behav Immun. 2016 Jul;55(55):179-90. https://doi.org/10.1016/j.bbi.2015.11.001
- 14 Babelhadj B, Di Bari MA, Pirisinu L, Chiappini B, Gaouar SB, Riccardi G et al. Prion disease in dromedary camels, Algeria. Emerg Infect Dis. 2018 Jun;24(6):1029-36. https://doi.org/10.3201/eid2406.172007
- 15 Chiesa R, Piccardo P, Quaglio E, Drisaldi B, Si-Hoe SL, Takao M, Ghetti B, Harris DA. Molecular distinction between pathogenic and infectious forms of the prion protein. J Virol. 2003;77(13):7611-22. https://doi.org/10.1128/JVI.77.13.7611-7622.2003
- 16 Piccardo P, Manson JC, King D, Ghetti B, Barron RM. Accumulation of prion protein in the brain that is not associated with transmissible disease. Proc Natl Acad Sci USA. 2007 Mar;104(11):4712-7. https://doi.org/10.1073/pnas.0609241104
- 17 Piccardo P, King D, Telling G, Manson JC, Barron RM. Dissociation of prion protein amyloid seeding from transmission of a spongiform encephalopathy. J Virol. 2013 Nov;87(22):12349-56. https://doi.org/10.1128/JVI.00673-13
- 18 Jeffrey M, Perez BB, Martin S, Terry L, González L. Idiopathic Brainstem Neuronal Chromatolysis (IBNC): a novel prion protein related disorder of cattle? BMC Vet Res. 2008 Sep;4(1):38. https://doi.org/10.1186/1746-6148-4-38
- 19 Piccardo P, Cervenakova L, Vasilyeva I, Yakovleva O, Bacik I, Cervenak J et al. Candidate cell substrates, vaccine production, and transmissible spongiform encephalopathies. Emerg Infect Dis. 2011;(17):2262-9. https://doi.org/10.3201/eid1712.110607
- 20 Piccardo P, Cervenak J, Yakovleva O, Gregori L, Pomeroy K, Cook A et al. Squirrel monkeys (Saimiri sciureus) infected with the agent of bovine spongiform encephalopathy develop tau pathology. J Comp Pathol. 2012 Jul;147(1):84-93. https://doi.org/10.1016/j.jcpa.2011.09.004
- 21 Piccardo P, Cervenak J, Bu M, Miller L, Asher DM. Complex proteinopathy with accumulations of prion protein, hyperphosphorylated tau, α-synuclein and ubiquitin in experimental bovine spongiform encephalopathy of monkeys. J Gen Virol. 2014 Jul;95(Pt 7):1612-8. https://doi.org/10.1099/vir.0.062083-0
- 22 Shankar GM, Walsh DM. Alzheimer's disease: synaptic dysfunction and Abeta. Mol Neurodegener. 2009 Nov;4(23):48. https://doi.org/10.1186/1750-1326-4-48
- 23 Kovacs GG. Invited review: Neuropathology of tauopathies: principles and practice [Review]. Neuropathol Appl Neurobiol. 2015 Feb;41(1):3-23. https://doi.org/10.1111/nan.12208
- 24 Bancher C, Grundke-Iqbal I, Iqbal K, Kim KS, Wisniewski HM. Immunoreactivity of neuronal lipofuscin with monoclonal antibodies to the amyloid beta-protein. Neurobiol Aging. 1989 Mar-Apr;10(2):125-32. https://doi.org/10.1016/0197-4580(89)90021-3
- 25 Delaère P, Duyckaerts C, Masters C, Beyreuther K, Piette F, Hauw JJ. Large amounts of neocortical beta A4 deposits without neuritic plaques nor tangles in a psychometrically assessed, non-demented person. Neurosci Lett. 1990 Aug;116(1-2):87-93. https://doi.org/10.1016/0304-3940(90)90391-L
- 26 Reiniger L, Lukic A, Linehan J, Rudge P, Collinge J, Mead S et al. Tau, prions and Aβ: the triad of neurodegeneration. Acta Neuropathol. 2011 Jan;121(1):5-20. https://doi.org/10.1007/s00401-010-0691-0
- 27 Nazor KE, Kuhn F, Seward T, Green M, Zwald D, Pürro M et al. Immunodetection of disease-associated mutant PrP, which accelerates disease in GSS transgenic mice. EMBO J. 2005 Jul;24(13):2472-80. https://doi.org/10.1038/sj.emboj.7600717
- 28 Bishop MT, Hart P, Aitchison L, Baybutt HN, Plinston C, Thomson V et al. Predicting susceptibility and incubation time of human-to-human transmission of vCJD. Lancet Neurol. 2006 May;5(5):393-8. https://doi.org/10.1016/S1474-4422(06)70413-6
- 29 Wilson R, Hart P, Piccardo P, Hunter N, Casalone C, Baron T et al. Bovine PrP expression levels in transgenic mice influence transmission characteristics of atypical bovine spongiform encephalopathy. J Gen Virol. 2012 May;93(Pt 5):1132-40. https://doi.org/10.1099/vir.0.040030-0
- 30 Bruce ME, McBride PA, Farquhar CF. Precise targeting of the pathology of the sialoglycoprotein, PrP, and vacuolar degeneration in mouse scrapie. Neurosci Lett. 1989 Jul;102(1):1-6. https://doi.org/10.1016/0304-3940(89)90298-X
- 31 Piccardo P, King D, Brown D, Barron RM. Variable tau accumulation in murine models with abnormal prion protein deposits. J Neurol Sci. 2017 Dec;383(383):142-50. https://doi.org/10.1016/j.jns.2017.10.040
- 32 Jeffrey M, Goodsir CM, Bruce ME, McBride PA, Farquhar C. Morphogenesis of amyloid plaques in 87V murine scrapie. Neuropathol Appl Neurobiol. 1994 Dec;20(6):535-42. https://doi.org/10.1111/j.1365-2990.1994.tb01007.x
- 33 Barron RM, King D, Jeffrey M, McGovern G, Agarwal S, Gill AC et al. PrP aggregation can be seeded by pre-formed recombinant PrP amyloid fibrils without the replication of infectious prions. Acta Neuropathol. 2016 Oct;132(4):611-24. https://doi.org/10.1007/s00401-016-1594-5
- 34 Jeffrey M, Piccardo P, Ritchie DL, Ironside JW, Green AJ, McGovern G. A naturally occurring bovine tauopathy is widespread in the UK. PLoS One. 2015 Jun;10(6):e0129499. https://doi.org/10.1371/journal.pone.0129499
- 35 Walker L. Proteopathic strains and the heterogeneity of neurodegenerative diseases. Ann Rev Gen. 2016(50):329-46. https://doi.org/10.1146/annurev-genet-120215-034943
- 36 Stopschinski BE, Holmes BB, Miller GM, Manon VA, Vaquer-Alicea J, Prueitt WL et al. Specific glycosaminoglycan chain length and sulfation patterns are required for cell uptake of tau vs α-synuclein and β-amyloid aggregates. J Biol Chem. 2018 Jul;299(27):10826-40. htps://doi.org/10.1074/jbc.RA117.000378