Subscribe to RSS

DOI: 10.1590/0004-282X20180103
Multiple sclerosis: disease modifying therapy and the human leukocyte antigen
Esclerose múltipla: terapêutica modificadora da doença e antígenos leucocitários humanos
ABSTRACT
Objective: To investigate the potential relationship between the human leukocyte antigen (HLA) type (class I and II) and the response to several disease-modifying therapies (DMTs) in patients with multiple sclerosis (MS).
Methods: We analyzed clinical data of 87 patients with MS at the beginning and end of each type of DMT including the disease duration, Expanded Disability Status Scale and Multiple Sclerosis Severity Score (MSSS). Genotyping of HLA-DRB1, HLA-DPB1, HLA-DQB1, HLA-A, HLA-B and HLA-C alleles were identified using high-resolution techniques. Statistical correlation between the HLA type and response to DMTs was done using the initial and final MSSS.
Results: Statistical relationships (p < 0.05) were found for only 15 of 245 alleles tested. There was a reduction in the MSSS for patients treated with corticosteroids (DRB1*15:01, DPB1*04:01, DQB1*02:01 and DQB1*03:01), azathioprine (DRB1*03:01, DPB1*04:01, DQB1*03:02, DQB1*06:02, HLA-C*07:02), interferon β-1a 22 mcg (DRB1*11:04, DQB1*03:01 and DQB1*03:02), interferon β-1a 30 mcg (DPB1*02:01, HLA-C*05:01) and interferon β-1b (DQB1*02:01).
Conclusion: These findings suggest a few relationships between the HLA and response to DMTs in the disability for some types of HLA class I and II alleles in a specific subset of MS patients.
RESUMO
Objetivo: Investigação da possível relação entre os tipos dos antígenos leucocitários humanos (HLA) classes I e II e a reposta a diversas terapêuticas modificadores da doença na incapacidade (DMT) da esclerose múltipla (MS).
Métodos: Foram estudados os dados clínicos de 87 pacientes com MS no início e no final de cada de cada DMT, incluindo o tempo de doença, EDSS e MSSS. Através de técnicas de genotipagem de alta resolução, foram identificados os alelos dos HLA-DRB1, HLA-DPB1, HLA-DQB1, HLA-A, HLA-B e HLA-C. Foram realizados estudos estatísticos entre os tipos de HLA e a resposta às DMT, utilizando os valores iniciais e finais do MSSS.
Resultados: Foram encontradas relações estatísticas (p < 0.05) para somente 15 alelos de 245 analisados. Houve redução dos valores do MSSS em pacientes tratados com corticosteroides (DRB1*15:01, DPB1*04:01, DQB1*02:01 e 03:01), azatioprina (DRB1*03:01, DPB1*04:01, DQB1*06:02, DQB1*03:02, HLA-C*07:02), interferon β-1a 22 mcg (DRB1*11:04, DQB1*03:01 e 03:02), interferon β-1a 30 mcg (DPB1*02:01, HLA-C*05:01) e interferon β-1b (DQB1*02:01).
Conclusão: Os dados sugerem poucas relações entre os alguns tipos de HLA classe I e II com a resposta às DMT na incapacidade em grupos específicos de pacientes com MS.
Support
This study was supported by UFPR, CNPq, Serono and Biogen.
Publication History
Received: 15 February 2018
Accepted: 10 July 2018
Article published online:
22 August 2023
© 2023. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Cross AH, Naismith RT. Established and novel disease-modifying treatments in multiple sclerosis. J Intern Med. 2014 Apr;275(4):350-63. https://doi.org/10.1111/joim.12203
- 2 Wingerchuk DM, Carter JL. Multiple sclerosis: current and emerging disease-modifying therapies and treatment strategies. Mayo Clin Proc. 2014 Feb;89(2):225-40. https://doi.org/10.1016/j.mayocp.2013.11.002
- 3 Werneck LC, Lorenzoni PJ, Radünz VA, Utiumi MA, Kay CS, Scola RH. Influence of treatment in multiple sclerosis disability: an open, retrospective, non-randomized long-term analysis. Arq Neuropsiquiatr. 2010 Aug;68(4):511-21. https://doi.org/10.1590/S0004-282X2010000400008
- 4 Comabella M, Fernández-Arquero M, Río J, Guinea A, Fernández M, Cenit MC et al. HLA class I and II alleles and response to treatment with interferon-beta in relapsing-remitting multiple sclerosis. J Neuroimmunol. 2009 May;210(1-2):116-9. https://doi.org/10.1016/j.jneuroim.2009.01.012
- 5 Grossman I, Avidan N, Singer C, Goldstaub D, Hayardeny L, Eyal E et al. Pharmacogenetics of glatiramer acetate therapy for multiple sclerosis reveals drug-response markers. Pharmacogenet Genomics. 2007 Aug;17(8):657-66. https://doi.org/10.1097/FPC.0b013e3281299169
- 6 Fernández O, Fernandéz V, Mayorga C, Guerrero M, Leon A, Tamayo JA. HLA class II and response to inferferon-beta in multiple sclerosis. Acta Neurol Scand 2005;112:391-4. https://doi.org/10.1111/j.1600-0404.2005.00415.x
- 7 Samadzadeh S, Tabibian E, Sabokbar T, Shakoori A, Dehgolan SR, Armaki SA, et al. HLA-DRB1 does not have a role in clinical response to interferon-beta among Iranian multiple sclerosis patients. J Neurol Sci. 2015 May;352(1-2):37-40. https://doi.org/10.1016/j.jns.2015.03.004
- 8 Søndergaard HB, Petersen ER, Magyari M, Sellebjerg F, Oturai AB. Genetic burden of MS risk variants distinguish patients from healthy individuals but are not associated with disease activity. Mult Scler Relat Disord. 2017 Apr;13:25-7. https://doi.org/10.1016/j.msard.2017.01.015
- 9 Murphy K, Travers P, Walport M. Janeways's Immunobiology. 7th ed. New York: Garland Sciences; 2008.
- 10 Werneck LC, Lorenzoni PJ, Arndt RC, Kay CS, Scola RH. The immunogenetics of multiple sclerosis. The frequency of HLA-alleles class 1 and 2 is lower in Southern Brazil than in the European population. Arq Neuropsiquiatr. 2016 Aug;74(8):607-16. https://doi.org/10.1590/0004-282X20160100
- 11 Buck D, Cepok S, Hoffmann S, Grummel V, Jochim A, Berthele A et al. Influence of the HLA-DRB1 genotype on antibody development to interferon beta in multiple sclerosis. Arch Neurol. 2011 Apr;68(4):480-7. https://doi.org/10.1001/archneurol.2011.65
- 12 Barbosa MD, Vielmetter J, Chu S, Smith DD, Jacinto J. Clinical link between MHC class II haplotype and interferon-beta (IFN-beta) immunogenicity. Clin Immunol. 2006 Jan;118(1):42-50. https://doi.org/10.1016/j.clim.2005.08.017 PMID:16260183
- 13 Mazdeh M, Taheri M, Sayad A, Bahram S, Omrani MD, Movafagh A et al. HLA genes as modifiers of response to IFN-β-1a therapy in relapsing-remitting multiple sclerosis. Pharmacogenomics. 2016 Apr;17(5):489-98. https://doi.org/10.2217/pgs.16.2
- 14 Ross CJ, Towfic F, Shankar J, Laifenfeld D, Thoma M, Davis M et al. A pharmacogenetic signature of high response to Copaxone in late-phase clinical-trial cohorts of multiple sclerosis. Genome Med. 2017 May;9(1):50. https://doi.org/10.1186/s13073-017-0436-y
- 15 Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011 Feb;69(2):292-302. https://doi.org/10.1002/ana.22366
- 16 Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014 Jul;83(3):278-86. https://doi.org/10.1212/WNL.20180103201801030560
- 17 Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983 Nov;33(11):1444-52. https://doi.org/10.1212/WNL.33.11.1444
- 18 Roxburgh RH, Seaman SR, Masterman T, Hensiek AE, Sawcer SJ, Vukusic S et al. Multiple Sclerosis Severity Score: using disability and disease duration to rate disease severity. Neurology. 2005 Apr;64(7):1144-51. https://doi.org/10.1212/01.WNL.0000156155.19270.F8
- 19 de Winter JC. Using t-test with extremely small sample size. Pract Assess Res Eval. 2013;18(10):1-12.
- 20 Iman A, Mohamammed U, Abanyam CM. On consistency and limitation of paired t-test: sign and Wilcoxon sign rank test. IOSR Journal of Mathematics. 2014;10:1-6. https://doi.org/10.9790/5728-10140106
- 21 HLA Informatics Group. The WHO Nomenclature Committee for Factors of the HLA System. London: HLA; Release 3.33.0. 2018 [cited 2018 Jul 11]. Available from: http://www.ebi.ac.uk/imgt/hla/
- 22 Robinson J, Halliwell JA, McWilliam H, Lopez R, Parham P, Marsh SG. The IMGT/HLA database. Nucleic Acids Res. 2013 Jan;41(Database issue):D1222-7. https://doi.org/10.1093/nar/gks949
- 23 Leray E, Yaouanq J, Le Page E, Coustans M, Laplaud D, Oger J et al. Evidence for a two-stage disability progression in multiple sclerosis. Brain. 2010 Jul;133(Pt 7):1900-13. https://doi.org/10.1093/brain/awq076
- 24 Rae-Grant A, Day GS, Marrie RA, Rabinstein A, Cree BA, Gronseth GS et al. Practice guideline recommendations summary: Disease-modifying therapies for adults with multiple sclerosis: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology [Supplemental Data.]. Neurology. 2018 Apr;90(17):777-88. https://doi.org/10.1212/WNL.20180103201801035347
- 25 Stoppe M, Busch M, Krizek L, Then Bergh F. Outcome of MS relapses in the era of disease-modifying therapy. BMC Neurol. 2017 Aug;17(1):151. https://doi.org/10.1186/s12883-017-0927-x
- 26 Johnson LN, Morey SS. Repeated intervals of high-dose corticosteroid: an overlooked therapy in multiple sclerosis. Mo Med. 2005 Jan-Feb;102(1):47-50.
- 27 Etemadifar M, Janghorbani M, Shaygannejad V. Comparison of interferon beta products and azathioprine in the treatment of relapsing-remitting multiple sclerosis. J Neurol. 2007 Dec;254(12):1723-8. https://doi.org/10.1007/s00415-007-0637-1
- 28 British and Dutch Multiple Sclerosis Azathioprine Trial Group. Double-masked trial of azathioprine in multiple sclerosis. Lancet. 1988 Jul;2(8604):179-83. https://doi.org/10.1016/S0140-6736(88)92286-6
- 29 Casetta I, Iuliano G, Filippini G. Azathioprine for multiple sclerosis. J Neurol Neurosurg Psychiatry. 2009 Feb;80(2):131-2. https://doi.org/10.1136/jnnp.2008.144972
- 30 Massacesi L, Parigi A, Barilaro A, Repice AM, Pellicanò G, Konze A et al. Efficacy of azathioprine on multiple sclerosis new brain lesions evaluated using magnetic resonance imaging. Arch Neurol. 2005 Dec;62(12):1843-7. https://doi.org/10.1001/archneur.62.12.1843
- 31 Madigand M, Oger JJ, Fauchet R, Sabouraud O, Genetet B. HLA profiles in multiple sclerosis suggest two forms of disease and the existence of protective haplotypes. J Neurol Sci. 1982 Mar;53(3):519-29. https://doi.org/10.1016/0022-510X(82)90248-9
- 32 Flechter S, Klein T, Pollak L. Influence of histocompatibility genes on disease susceptibility and treatment response in patients with relapsing-remitting multiple sclerosis treated with interferon β-1a. Neurol Int. 2011 Jun;3(1):e5. https://doi.org/10.4081/ni.2011.e5
- 33 Dhib-Jalbut S, Valenzuela RM, Ito K, Kaufman M, Ann Picone M, Buyske S. HLA DR and DQ alleles and haplotypes associated with clinical response to glatiramer acetate in multiple sclerosis. Mult Scler Relat Disord. 2013 Oct;2(4):340-8. https://doi.org/10.1016/j.msard.2013.02.005
- 34 Ashtari F, Savoj MR. Effects of low dose methotrexate on relapsing-remitting multiple sclerosis in comparison to Interferon β-1α: a randomized controlled trial. J Res Med Sci. 2011 Apr;16(4):457-62.
- 35 Byun E, Caillier SJ, Montalban X, Villoslada P, Fernández O, Brassat D et al. Genome-wide pharmacogenomic analysis of the response to interferon beta therapy in multiple sclerosis. Arch Neurol. 2008 Mar;65(3):337-44. https://doi.org/10.1001/archneurol.2008.47
- 36 Mahurkar S, Moldovan M, Suppiah V, Sorosina M, Clarelli F, Liberatore G et al. Response to interferon-beta treatment in multiple sclerosis patients: a genome-wide association study. Pharmacogenomics J. 2017 Jul;17(4):312-8. https://doi.org/10.1038/tpj.2016.20
- 37 Comabella M, Craig DW, Morcillo-Suárez C, Río J, Navarro A, Fernández M et al. Genome-wide scan of 500,000 single-nucleotide polymorphisms among responders and nonresponders to interferon beta therapy in multiple sclerosis. Arch Neurol. 2009 Aug;66(8):972-8. https://doi.org/10.1001/archneurol.2009.150
- 38 Kulakova OG, Tsareva EY, Lvovs D, Favorov AV, Boyko AN, Favorova OO. Comparative pharmacogenetics of multiple sclerosis: IFN-β versus glatiramer acetate. Pharmacogenomics. 2014 Apr;15(5):679-85. https://doi.org/10.2217/pgs.14.26
- 39 Kieseier BC. The mechanism of action of interferon-β in relapsing multiple sclerosis. CNS Drugs. 2011 Jun;25(6):491-502. https://doi.org/10.2165/11591110-20180103000-00000
- 40 Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011 Aug;476(7359):214-9. https://doi.org/10.1038/nature10251
- 41 Pierrot-Deseilligny C, Souberbielle JC. Contribution of vitamin D insufficiency to the pathogenesis of multiple sclerosis. Ther Adv Neurol Disorder. 2013;6(2):81-116. https://doi.org/10.1177/1756285612473513
- 42 Wergeland S, Myhr KM, Løken-Amsrud KI, Beiske AG, Bjerve KS, Hovdal H et al. Vitamin D, HLA-DRB1 and Epstein-Barr virus antibody levels in a prospective cohort of multiple sclerosis patients. Eur J Neurol. 2016 Jun;23(6):1064-70. https://doi.org/10.1111/ene.12986
- 43 Jangi S, Gandhi R, Cox LM, Li N, Glehn F, Yan R et al. Alterations of the human gut microbiome in multiple sclerosis. Nat Commun. 2016 Jun;7:12015. https://doi.org/10.1038/ncomms12015
- 44 Berg-Hansen P, Moen SM, Sandvik L, Harbo HF, Bakken IJ, Stoltenberg C et al. Prevalence of multiple sclerosis among immigrants in Norway. Mult Scler. 2015 May;21(6):695-702. https://doi.org/10.1177/1352458514554055