Subscribe to RSS

DOI: 10.1590/0004-282X20180091
Basal cortisol levels and the relationship with clinical symptoms in multiple sclerosis: a systematic review
Níveis de cortisol basal e a relação com sintomas clínicos na esclerose múltipla: uma revisão sistemática
ABSTRACT
Multiple sclerosis (MS) is a demyelinating, progressive and neurodegenerative disease. A disturbance on the hypothalamic-pituitary-adrenal axis can be observed in patients with MS, showing altered cortisol levels. We aimed to identify basal cortisol levels and verify the relationship with clinical symptoms in patients with MS. A systematic search was conducted in the databases: Pubmed, Web of Science and SCOPUS. Both higher and lower cortisol levels were associated with MS. Higher cortisol levels were associated with depression and anxiety, while lower levels were associated with depression, fatigue and urinary dysfunction. Higher cortisol levels may be associated with the progression and severity of MS.
RESUMO
A esclerose múltipla (EM) é uma doença desmielinizante, progressiva e neurodegenerativa. Um distúrbio no eixo hipotálamo-hipófise-adrenal pode ser observado em pacientes com EM, mostrando níveis alterados de cortisol. Nosso objetivo foi identificar os níveis basais de cortisol e verificar a relação com os sintomas clínicos em pacientes com EM. Uma busca sistemática foi realizada nas bases de dados: Pubmed, Web of Science e SCOPUS. Ambos os níveis de cortisol elevado e baixo foram associados com a EM. Níveis mais elevados de cortisol foram associados à depressão e ansiedade, enquanto níveis mais baixos foram associados à depressão, fadiga e disfunção urinária. Níveis altos de cortisol podem estar associados à progressão e gravidade da EM.
Keywords:
Multiple sclerosis - hydrocortisone - pituitary-adrenal system - neurologic manifestations - general symptomsPalavras-chave:
Esclerose múltipla - hidrocortisona - sistema hipófise-suprarrenal - manifestações neurológicas - sintomas geraisPublication History
Received: 15 April 2018
Accepted: 06 June 2018
Article published online:
22 August 2023
© 2023. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Altowaijri G, Fryman A, Yadav V. Dietary interventions and multiple sclerosis. Curr Neurol Neurosci Rep. 2017 Mar;17(3):28. https://doi.org/10.1007/s11910-017-0732-3
- 2 Lassmann H, van Horssen J, Mahad D. Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol. 2012 Nov;8(11):647-56. https://doi.org/10.1038/nrneurol.2012.168
- 3 Loma I, Heyman R. Multiple sclerosis: pathogenesis and treatment. Curr Neuropharmacol. 2011 Sep;9(3):409-16. https://doi.org/10.2174/157015911796557911
- 4 Deckx N, Lee WP, Berneman ZN, Cools N. Neuroendocrine immunoregulation in multiple sclerosis. Clin Dev Immunol. 2013;2013:705232. https://doi.org/10.1155/2013/705232
- 5 Kern S, Schultheiss T, Schneider H, Schrempf W, Reichmann H, Ziemssen T. Circadian cortisol, depressive symptoms and neurological impairment in early multiple sclerosis. Psychoneuroendocrinology. 2011 Nov;36(10):1505-12. https://doi.org/10.1016/j.psyneuen.2011.04.004
- 6 Ortiz P, Bareno J, Cabrera L, Rueda K, Rovira A. [Magnetic resonance imaging with gadolinium in the acute phase of relapses in multiple sclerosis]. Rev Neurol. 2017 Mar;64(6):241-6. Spanish.
- 7 Sakai RE, Feller DJ, Galetta KM, Galetta SL, Balcer LJ. Vision in multiple sclerosis: the story, structure-function correlations, and models for neuroprotection. J Neuroophthalmol. 2011 Dec;31(4):362-73. https://doi.org/10.1097/WNO.0b013e318238937f
- 8 Pilutti LA, Greenlee TA, Motl RW, Nickrent MS, Petruzzello SJ. Effects of exercise training on fatigue in multiple sclerosis: a meta-analysis. Psychosom Med. 2013 Jul-Aug;75(6):575-80. https://doi.org/10.1097/PSY.0b013e31829b4525
- 9 Gunn H, Markevics S, Haas B, Marsden J, Freeman J. Systematic review: the effectiveness of interventions to reduce falls and improve balance in adults with multiple sclerosis. Arch Phys Med Rehabil. 2015 Oct;96(10):1898-912. https://doi.org/10.1016/j.apmr.2015.05.018
- 10 Phé V, Chartier-Kastler E, Panicker JN. Management of neurogenic bladder in patients with multiple sclerosis. Nat Rev Urol. 2016 May;13(5):275-88. https://doi.org/10.1038/nrurol.2016.53
- 11 Pearson M, Dieberg G, Smart N. Exercise as a therapy for improvement of walking ability in adults with multiple sclerosis: a meta-analysis. Arch Phys Med Rehabil. 2015 Jul;96(7):1339-1348.e7. https://doi.org/10.1016/j.apmr.2015.02.011
- 12 Coric D, Balk LJ, Verrijp M, Eijlers A, Schoonheim MM, Killestein J, et al. Cognitive impairment in patients with multiple sclerosis is associated with atrophy of the inner retinal layers. Mult Scler. 2018 Feb;24(2):158-66. https://doi.org/10.1177/1352458517694090
- 13 Ebers GC. Environmental factors and multiple sclerosis. Lancet Neurol. 2008 Mar;7(3):268-77. https://doi.org/10.1016/S1474-4422(08)70042-5
- 14 Kümpfel T, Schwan M, Weber F, Holsboer F, Trenkwalder C, Then Bergh F. Hypothalamo-pituitary-adrenal axis activity evolves differentially in untreated versus treated multiple sclerosis. Psychoneuroendocrinology. 2014 Jul;45:87-95. https://doi.org/10.1016/j.psyneuen.2014.03.012
- 15 Lassmann H, Brück W, Lucchinetti C. Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med. 2001 Mar;7(3):115-21. https://doi.org/10.1016/S1471-4914(00)01909-2
- 16 Taub DD. Neuroendocrine interactions in the immune system. Cell Immunol. 2008 Mar-Apr;252(1-2):1-6. https://doi.org/10.1016/j.cellimm.2008.05.006
- 17 Eskandari F, Webster JI, Sternberg EM. Neural immune pathways and their connection to inflammatory diseases. Arthritis Res Ther. 2003;5(6):251-65. https://doi.org/10.1186/ar1002
- 18 Huitinga I, Erkut ZA, Beurden D, Swaab DF. Impaired hypothalamus-pituitary-adrenal axis activity and more severe multiple sclerosis with hypothalamic lesions. Ann Neurol. 2004 Jan;55(1):37-45. https://doi.org/10.1002/ana.10766
- 19 Barnes PJ. Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci (Lond). 1998 Jun;94(6):557-72. https://doi.org/10.1042/cs0940557
- 20 Bellavance MA, Rivest S. The HPA: immune Axis and the immunomodulatory actions of glucocorticoids in the brain. Front Immunol. 2014 Mar;5:136. https://doi.org/10.3389/fimmu.2014.00136
- 21 Gold SM, Raji A, Huitinga I, Wiedemann K, Schulz KH, Heesen C. Hypothalamo-pituitary-adrenal axis activity predicts disease progression in multiple sclerosis. J Neuroimmunol. 2005 Aug;165 (1-2): 186-91. https://doi.org/10.1016/j.jneuroim.2005.04.014
- 22 Heesen C, Gold SM, Huitinga I, Reul JM. Stress and hypothalamic-pituitary-adrenal axis function in experimental autoimmune encephalomyelitis and multiple sclerosis - a review. Psychoneuroendocrinology. 2007 Jul;32(6):604-18. https://doi.org/10.1016/j.psyneuen.2007.05.002
- 23 Gold SM, Heesen C. Stress and disease progression in multiple sclerosis and its animal models. Neuroimmunomodulation. 2006;13(5-6):318-26. https://doi.org/10.1159/000104860
- 24 Melief J, Koper JW, Endert E, Møller HJ, Hamann J, Uitdehaag BM et al. Glucocorticoid receptor haplotypes conferring increased sensitivity (BclI and N363S) are associated with faster progression of multiple sclerosis. J Neuroimmunol. 2016 Oct;299:84-9. https://doi.org/10.1016/j.jneuroim.2016.08.019
- 25 Powell DJ, Moss-Morris R, Liossi C, Schlotz W. Circadian cortisol and fatigue severity in relapsing-remitting multiple sclerosis. Psychoneuroendocrinology. 2015 Jun;56:120-31. https://doi.org/10.1016/j.psyneuen.2015.03.010
- 26 Grasser A, Möller A, Backmund H, Yassouridis A, Holsboer F. Heterogeneity of hypothalamic-pituitary-adrenal system response to a combined dexamethasone-CRH test in multiple sclerosis. Exp Clin Endocrinol Diabetes. 1996;104(1):31-7. https://doi.org/10.1055/s-0029-1211419
- 27 Then Bergh F, Kümpfel T, Trenkwalder C, Rupprecht R, Holsboer F. Dysregulation of the hypothalamo-pituitary-adrenal axis is related to the clinical course of MS. Neurology. 1999 Sep;53(4):772-7. https://doi.org/10.1212/WNL.53.4.772
- 28 Heesen C, Gold SM, Raji A, Wiedemann K, Schulz KH. Cognitive impairment correlates with hypothalamo-pituitary-adrenal axis dysregulation in multiple sclerosis. Psychoneuroendocrinology. 2002 May;27(4):505-17. https://doi.org/10.1016/S0306-4530(01)00071-3
- 29 Fassbender K, Schmidt R, Mössner R, Kischka U, Kühnen J, Schwartz A et al. Mood disorders and dysfunction of the hypothalamic-pituitary-adrenal axis in multiple sclerosis: association with cerebral inflammation. Arch Neurol. 1998 Jan;55(1):66-72. https://doi.org/10.1001/archneur.55.1.66
- 30 Melief J, Wit SJ, Eden CG, Teunissen C, Hamann J, Uitdehaag BM et al. HPA axis activity in multiple sclerosis correlates with disease severity, lesion type and gene expression in normal-appearing white matter. Acta Neuropathol. 2013 Aug;126(2):237-49. https://doi.org/10.1007/s00401-013-1140-7
- 31 Baranowska-Bik A, Kochanowski J, Uchman D, Litwiniuk A, Kalisz M, Martynska L et al. Association of copeptin and cortisol in newly diagnosed multiple sclerosis patients. J Neuroimmunol. 2015 May;282:21-4. https://doi.org/10.1016/j.jneuroim.2015.03.011
- 32 Ysrraelit MC, Gaitán MI, Lopez AS, Correale J. Impaired hypothalamic-pituitary-adrenal axis activity in patients with multiple sclerosis. Neurology. 2008 Dec;71(24):1948-54. https://doi.org/10.1212/01.wnl.0000336918.32695.6b
- 33 Erkut ZA, Endert E, Huitinga I, Swaab DF. Cortisol is increased in postmortem cerebrospinal fluid of multiple sclerosis patients: relationship with cytokines and sepsis. Mult Scler. 2002 May;8(3):229-36. https://doi.org/10.1191/1352458502ms797oa
- 34 Thompson SB, Daly S, Le Blanche A, Abidi M, Belkhira C, Marco G. fMRI randomized study of mental and motor task performance and cortisol levels to potentiate cortisol as a new diagnostic biomarker. J Neurol Neurosci. 2016;7(2):92. https://doi.org/10.21767/2171-6625.100092
- 35 Schapiro R. The pathophysiology of MS-related fatigue: what is the role of wake promotion? Int J MS Care. 2002;(suppl):6-8.
- 36 Chiaravalloti ND, DeLuca J. Cognitive impairment in multiple sclerosis. Lancet Neurol. 2008 Dec;7(12):1139-51. https://doi.org/10.1016/S1474-4422(08)70259-X
- 37 Gold SM, Krüger S, Ziegler KJ, Krieger T, Schulz KH, Otte C et al. Endocrine and immune substrates of depressive symptoms and fatigue in multiple sclerosis patients with comorbid major depression. J Neurol Neurosurg Psychiatry. 2011 Jul;82(7):814-8. https://doi.org/10.1136/jnnp.2010.230029
- 38 Heesen C, Nawrath L, Reich C, Bauer N, Schulz KH, Gold SM. Fatigue in multiple sclerosis: an example of cytokine mediated sickness behaviour? J Neurol Neurosurg Psychiatry. 2006 Jan;77(1):34-9. https://doi.org/10.1136/jnnp.2005.065805
- 39 Gottschalk M, Kümpfel T, Flachenecker P, Uhr M, Trenkwalder C, Holsboer F et al. Fatigue and regulation of the hypothalamo-pituitary-adrenal axis in multiple sclerosis. Arch Neurol. 2005 Feb;62(2):277-80. https://doi.org/10.1001/archneur.62.2.277
- 40 Téllez N, Comabella M, Julià E, Río J, Tintoré M, Brieva L, et al. Fatigue in progressive multiple sclerosis is associated with low levels of dehydroepiandrosterone. Mult Scler. 2006;12(4):487-94. https://doi.org/10.1191/135248505ms1322oa
- 41 Heesen C, Schulz KH, Fiehler J, Von der Mark U, Otte C, Jung R et al. Correlates of cognitive dysfunction in multiple sclerosis. Brain Behav Immun. 2010 Oct;24(7):1148-55. https://doi.org/10.1016/j.bbi.2010.05.006
- 42 Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med. 2009 Aug;151(4):W65-94. https://doi.org/10.7326/0003-4819-151-4-200908180-00136
- 43 Najafi P, Moghadasi M. The effect of yoga training on enhancement of Adrenocorticotropic hormone (ACTH) and cortisol levels in female patients with multiple sclerosis. Complement Ther Clin Pract. 2017 Feb;26:21-5. https://doi.org/10.1016/j.ctcp.2016.11.006
- 44 Eftekhari E, Etemadifar M, Mostahfezian M, Zafari A. Effects of resistance training and vibration on hormonal changes in female patients with multiple sclerosis. Neurol Asia. 2014;19:63-7.
- 45 Kern S, Krause I, Horntrich A, Thomas K, Aderhold J, Ziemssen T. Cortisol awakening response is linked to disease course and progression in multiple sclerosis. PLoS One. 2013 Apr;8(4):e60647. https://doi.org/10.1371/journal.pone.0060647
- 46 Wipfler P, Heikkinen A, Harrer A, Pilz G, Kunz A, Golaszewski SM et al. Circadian rhythmicity of inflammatory serum parameters: a neglected issue in the search of biomarkers in multiple sclerosis. J Neurol. 2013 Jan;260(1):221-7. https://doi.org/10.1007/s00415-012-6622-3
- 47 Gold SM, Kern KC, O’Connor MF, Montag MJ, Kim A, Yoo YS et al. Smaller cornu ammonis 2-3/dentate gyrus volumes and elevated cortisol in multiple sclerosis patients with depressive symptoms. Biol Psychiatry. 2010 Sep;68(6):553-9. https://doi.org/10.1016/j.biopsych.2010.04.025
- 48 Heidbrink C, Häusler SF, Buttmann M, Ossadnik M, Strik HM, Keller A et al. Reduced cortisol levels in cerebrospinal fluid and differential distribution of 11beta-hydroxysteroid dehydrogenases in multiple sclerosis: implications for lesion pathogenesis. Brain Behav Immun. 2010 Aug;24(6):975-84. https://doi.org/10.1016/j.bbi.2010.04.003
- 49 Villoslada P, Alonso C, Agirrezabal I, Kotelnikova E, Zubizarreta I, Pulido-Valdeolivas I et al. Metabolomic signatures associated with disease severity in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2017 Jan;4(2):e321. https://doi.org/10.1212/NXI.20180091201800910321
- 50 Akcali A, Zengin F, Aksoy SN, Zengin O. Fatigue in Multiple Sclerosis: is it related to cytokines and hypothalamic-pituitaryadrenal axis? Mult Scler Relat Disord. 2017 Jul;15:37-41. https://doi.org/10.1016/j.msard.2017.03.004
- 51 Arata M, Sternberg Z. Neuroendocrine responses to transvascular autonomic modulation: a modified balloon angioplasty in multiple sclerosis patients. Horm Metab Res. 2016 Feb;48(2):123-9. https://doi.org/10.1055/s-0035-1547235
- 52 Koutsis G, Evangelopoulos ME, Sfagos C, Markianos M. Neurochemical and neuroendocrine correlates of overactive bladder at first demyelinating episode. Neurourol Urodyn. 2016 Nov;35(8):955-8. https://doi.org/10.1002/nau.22834
- 53 Lombardi G, Celso M, Bartelli M, Cilotti A, Del Popolo G. Female sexual dysfunction and hormonal status in multiple sclerosis patients. J Sex Med. 2011 Apr;8(4):1138-46. https://doi.org/10.1111/j.1743-6109.2010.02161.x
- 54 Mackereth PA, Booth K, Hillier VF, Caress AL. Reflexology and progressive muscle relaxation training for people with multiple sclerosis: a crossover trial. Complement Ther Clin Pract. 2009 Feb;15(1):14-21. https://doi.org/10.1016/j.ctcp.2008.07.002
- 55 Lobentanz IS, Asenbaum S, Vass K, Sauter C, Klösch G, Kollegger H et al. Factors influencing quality of life in multiple sclerosis patients: disability, depressive mood, fatigue and sleep quality. Acta Neurol Scand. 2004 Jul;110(1):6-13. https://doi.org/10.1111/j.1600-0404.2004.00257.x
- 56 Pariante CM, Lightman SL. The HPA axis in major depression: classical theories and new developments. Trends Neurosci. 2008 Sep;31(9):464-8. https://doi.org/10.1016/j.tins.2008.06.006
- 57 Harbuz MS, Leonard JP, Lightman SL, Cuzner ML. Changes in hypothalamic corticotrophin-releasing factor and anterior pituitary pro-opiomelanocortin mRNA during the course of experimental allergic encephalomyelitis. J Neuroimmunol. 1993 Jun;45(1-2):127-32. https://doi.org/10.1016/0165-5728(93)90172-U
- 58 Stefferl A, Storch MK, Linington C, Stadelmann C, Lassmann H, Pohl T et al. Disease progression in chronic relapsing experimental allergic encephalomyelitis is associated with reduced inflammation-driven production of corticosterone. Endocrinology. 2001 Aug;142(8):3616-24. https://doi.org/10.1210/endo.142.8.8292
- 59 Schumann EM, Kümpfel T, Then Bergh F, Trenkwalder C, Holsboer F, Auer DP. Activity of the hypothalamic-pituitary-adrenal axis in multiple sclerosis: correlations with gadolinium-enhancing lesions and ventricular volume. Ann Neurol. 2002 Jun;51(6):763-7.
- 60 Sauvé B, Koren G, Walsh G, Tokmakejian S, Van Uum SH. Measurement of cortisol in human hair as a biomarker of systemic exposure. Clin Invest Med. 2007;30(5):E183-91. https://doi.org/10.25011/cim.v30i5.2894
- 61 Uhr M, Holsboer F, Müller MB. Penetration of endogenous steroid hormones corticosterone, cortisol, aldosterone and progesterone into the brain is enhanced in mice deficient for both mdr1a and mdr1b P-glycoproteins. J Neuroendocrinol. 2002 Sep;14(9):753-9. https://doi.org/10.1046/j.1365-2826.2002.00836.x
- 62 Minden SL, Frankel D, Hadden L, Perloffp J, Srinath KP, Hoaglin DC. The Sonya Slifka longitudinal multiple sclerosis study: methods and sample characteristics. Mult Scler. 2006 Feb;12(1):24-38. https://doi.org/10.1191/135248506ms1262oa
- 63 Targum SD, Fava M. Fatigue as a residual symptom of depression. Innov Clin Neurosci. 2011 Oct;8(10):40-3.
- 64 Asnis GM, Sachar EJ, Halbreich U, Nathan RS, Ostrow L, Halpern FS. Cortisol secretion and dexamethasone response in depression. Am J Psychiatry. 1981 Sep;138(9):1218-21. https://doi.org/10.1176/ajp.138.9.1218
- 65 Herbert J. Cortisol and depression: three questions for psychiatry. Psychol Med. 2013 Mar;43(3):449-69. https://doi.org/10.1017/S0033291712000955
- 66 Pucak ML, Carroll KA, Kerr DA, Kaplin AI. Neuropsychiatric manifestations of depression in multiple sclerosis: neuroinflammatory, neuroendocrine, and neurotrophic mechanisms in the pathogenesis of immune-mediated depression. Dialogues Clin Neurosci. 2007;9(2):125-39.
- 67 Vattakatuchery JJ, Rickards H, Cavanna AE. Pathogenic mechanisms of depression in multiple sclerosis. J Neuropsychiatry Clin Neurosci. 2011;23(3):261-76. https://doi.org/10.1176/jnp.23.3.jnp261