Subscribe to RSS

DOI: 10.1590/0004-282X20170193
Chronic treatment with carvacrol improves passive avoidance memory in a rat model of Parkinson's disease
O tratamento com carvacrol melhora a memória de esquiva passiva em um modelo da doença de Parkinson em ratos
ABSTRACT
The present study investigated the effects of carvacrol on motor and memory deficits as well as hyperalgesia in the 6-OHDA-lesioned rat model of Parkinson's disease. The animals were subjected to unilateral microinjection of 6-OHDA into the medial forebrain bundle and treated with carvacrol (25, 50 and 100 mg/kg, ip) for six weeks after surgery. The 6-OHDA-lesioned rats showed contralateral rotations towards the lesion side, which was accompanied by learning and memory deficits in a passive avoidance test and a decrease in tail withdrawal latency in a tail flick test at the end of week 6. The results also showed that treatment with carvacrol at a dose of 25 mg/kg ameliorated memory deficits, with no effect on rotations and hyperalgesia in lesioned rats. In conclusion, carvacrol improves memory impairments in rats with Parkinson's disease; therefore, it may serve as an adjunct therapy for the alleviation of memory deficits in Parkinson's disease patients.
RESUMO
O presente estudo investigou os efeitos do carvacrol nos déficits motores e de memória, bem como na hiperalgesia, em um modelo da doença de Parkinson (DP) em ratos com lesões 6-OHDA. Os animais foram submetidos a microinjeção unilateral de 6-OHDA no feixe mediano do prosencéfalo e tratados com carvacrol (25, 50 e 100 mg / kg, ip) durante 6 semanas após a cirurgia. Os ratos com lesões 6-OHDA mostraram rotações contralaterais para o lado da lesão, que foram acompanhadas de déficits de aprendizagem e de memória em um teste de evitação passiva, e de uma diminuição da latência de retirada da cauda em um teste de cauda no final da semana 6. Os resultados também mostraram que o tratamento crçnico com carvacrol a uma dose de 25 mg / kg aliviou os déficits de memória, sem efeito sobre rotações e hiperalgesia em ratos lesados. Em conclusão, o carvacrol melhora a deficiência de memória em ratos com DP e, portanto, pode servir como uma terapia complementar para aliviar os déficits de memória em pacientes com DP.
Keywords:
Carvacrol - 6-hydroxydopamine - memory - motor activity - hyperalgesia - Parkinson's diseasePalavras-chave:
Carvacrol - 6-hidroxidopamina - memória - atividade motora - hiperalgesia - doença de ParkinsonSupport
This study was supported by Isfahan University of Medical Sciences.
Publication History
Received: 09 May 2017
Accepted: 08 November 2017
Article published online:
28 August 2023
© 2023. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Fahn S. Description of Parkinson’s disease as a clinical syndrome. Ann N Y Acad Sci. 2003 Jun;991(1):1-14. https://doi.org/10.1111/j.1749-6632.2003.tb07458.x
- 2 Brown RG, Marsden CD. How common is dementia in Parkinson’s disease? Lancet. 1984 Dec;2(8414):1262-5. https://doi.org/10.1016/S0140-6736(84)92807-1
- 3 Aarsland D, Andersen K, Larsen JP, Lolk A, Nielsen H, Kragh-Sørensen P. Risk of dementia in Parkinson’s disease: a community-based, prospective study. Neurology. 2001 Mar;56(6):730-6. https://doi.org/10.1212/WNL.56.6.730
- 4 Beiske AG, Loge JH, Rønningen A, Svensson E. Pain in Parkinson’s disease: prevalence and characteristics. Pain. 2009 Jan;141(1-2):173-7. https://doi.org/10.1016/j.pain.2008.12.004
- 5 Janvin CC. Cognitive impairment in patients with parkinson’s disease: profiles and implications for prognosis. Bora – Uib. 2007 [acess year Month day]. Available from: http://bora.uib.no/handle/1956/2242
- 6 Kulisevsky J, Avila A, Barbanoj M, Antonijoan R, Berthier ML, Gironell A. Acute effects of levodopa on neuropsychological performance in stable and fluctuating Parkinson’s disease patients at different levodopa plasma levels. Brain. 1996 Dec;119(Pt 6):2121-32. https://doi.org/10.1093/brain/119.6.2121
- 7 Baser KH. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr Pharm Des. 2008;14(29):3106-19. https://doi.org/10.2174/138161208786404227
- 8 Jukic M, Politeo O, Maksimovic M, Milos M, Milos M. In vitro acetylcholinesterase inhibitory properties of thymol, carvacrol and their derivatives thymoquinone and thymohydroquinone. Phytother Res. 2007 Mar;21(3):259-61. https://doi.org/10.1002/ptr.2063
- 9 Kaufmann D, Dogra AK, Wink M. Myrtenal inhibits acetylcholinesterase, a known Alzheimer target. J Pharm Pharmacol. 2011 Oct;63(10):1368-71. https://doi.org/10.1111/j.2042-7158.2011.01344.x
- 10 Melo FH, Venâncio ET, Sousa DP, Fonteles MMF, Vasconcelos SM, Viana GS et al. Anxiolytic-like effect of Carvacrol (5-isopropyl-2-methylphenol) in mice: involvement with GABAergic transmission. Fundam Clin Pharmacol. 2010 Aug;24(4):437-43. https://doi.org/10.1111/j.1472-8206.2009.00788.x
- 11 Melo FH, Moura BA, Sousa DP, Vasconcelos SM, Macedo DS, Fonteles MM et al. Antidepressant-like effect of carvacrol (5-Isopropyl-2-methylphenol) in mice: involvement of dopaminergic system. Fundam Clin Pharmacol. 2011 Jun;25(3):362-7. https://doi.org/10.1111/j.1472-8206.2010.00850.x
- 12 Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 5th ed. Amsterdam, London: Elsevier Academic; 2005.
- 13 Fujita M, Nishino H, Kumazaki M, Shimada S, Tohyama M, Nishimura T. Expression of dopamine transporter mRNA and its binding site in fetal nigral cells transplanted into the striatum of 6-OHDA lesioned rat. Brain Res Mol Brain Res. 1996 Jul;39(1-2):127-36. https://doi.org/10.1016/0169-328X(96)00018-6
- 14 Rajaei Z, Hosseini M, Alaei H. Effects of crocin on brain oxidative damage and aversive memory in a 6-OHDA model of Parkinson’s disease. Arq Neuropsiquiatr. 2016 Sep;74(9):723-9. https://doi.org/10.1590/0004-282X20160131
- 15 Tassorelli C, Greco R, Wang D, Sandrini M, Sandrini G, Nappi G. Nitroglycerin induces hyperalgesia in rats: time-course study. Eur J Pharmacol. 2003 Mar;464(2-3):159-62. https://doi.org/10.1016/S0014-2999(03)01421-3
- 16 Ahmadi M, Rajaei Z, Hadjzadeh MA, Nemati H, Hosseini M. Crocin improves spatial learning and memory deficits in the Morris water maze via attenuating cortical oxidative damage in diabetic rats. Neurosci Lett. 2017 Mar;642:1-6. https://doi.org/10.1016/j.neulet.2017.01.049
- 17 Campos FL, Carvalho MM, Cristovão AC, Je G, Baltazar G, Salgado AJ et al. Rodent models of Parkinson’s disease: beyond the motor symptomatology. Front Behav Neurosci. 2013 Nov;7:175. https://doi.org/10.3389/fnbeh.2013.00175
- 18 Tadaiesky MT, Dombrowski PA, Figueiredo CP, Cargnin-Ferreira E, Da Cunha C, Takahashi RN. Emotional, cognitive and neurochemical alterations in a premotor stage model of Parkinson’s disease. Neuroscience. 2008 Oct;156(4):830-40. https://doi.org/10.1016/j.neuroscience.2008.08.035
- 19 Palumbo A, Napolitano A, Barone P, Ischia M. Nitrite- and peroxide-dependent oxidation pathways of dopamine: 6-nitrodopamine and 6-hydroxydopamine formation as potential contributory mechanisms of oxidative stress- and nitric oxide-induced neurotoxicity in neuronal degeneration. Chem Res Toxicol. 1999 Dec;12(12):1213-22. https://doi.org/10.1021/tx990121g
- 20 Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol. 2001 Oct;65(2):135-72. https://doi.org/10.1016/S0301-0082(01)00003-X
- 21 Schwarting RK, Huston JP. Behavioral and neurochemical dynamics of neurotoxic meso-striatal dopamine lesions. Neurotoxicology. 1997;18(3):689-708.
- 22 Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003 Sep;39(6):889-909. https://doi.org/10.1016/S0896-6273(03)00568-3
- 23 Yu H, Zhang ZL, Chen J, Pei A, Hua F, Qian X et al. Carvacrol, a food-additive, provides neuroprotection on focal cerebral ischemia/reperfusion injury in mice. PLoS One. 2012;7(3):e33584. https://doi.org/10.1371/journal.pone.0033584
- 24 Sarre S, Yuan H, Jonkers N, Van Hemelrijck A, Ebinger G, Michotte Y. In vivo characterization of somatodendritic dopamine release in the substantia nigra of 6-hydroxydopamine-lesioned rats. J Neurochem. 2004 Jul;90(1):29-39. https://doi.org/10.1111/j.1471-4159.2004.02471.x
- 25 Lin MT, Wu JJ, Chandra A, Tsay BL. Activation of striatal dopamine receptors induces pain inhibition in rats. J Neural Transm (Vienna). 1981;51(3-4):213-22. https://doi.org/10.1007/BF01248953
- 26 Takeda R, Ikeda T, Tsuda F, Abe H, Hashiguchi H, Ishida Y et al. Unilateral lesions of mesostriatal dopaminergic pathway alters the withdrawal response of the rat hindpaw to mechanical stimulation. Neurosci Res. 2005 May;52(1):31-6. https://doi.org/10.1016/j.neures.2005.01.005
- 27 Chudler EH, Dong WK. The role of the basal ganglia in nociception and pain. Pain. 1995 Jan;60(1):3-38. https://doi.org/10.1016/0304-3959(94)00172-B
- 28 Janvin CC, Larsen JP, Aarsland D, Hugdahl K. Subtypes of mild cognitive impairment in Parkinson’s disease: progression to dementia. Mov Disord. 2006 Sep;21(9):1343-9. https://doi.org/10.1002/mds.20974
- 29 Lewis SJ, Cools R, Robbins TW, Dove A, Barker RA, Owen AM. Using executive heterogeneity to explore the nature of working memory deficits in Parkinson’s disease. Neuropsychologia. 2003;41(6):645-54. https://doi.org/10.1016/S0028-3932(02)00257-9
- 30 Beppe GJ, Dongmo AB, Foyet HS, Tsabang N, Olteanu Z, Cioanca O et al. Memory-enhancing activities of the aqueous extract of Albizia adianthifolia leaves in the 6-hydroxydopamine-lesion rodent model of Parkinson’s disease. BMC Complement Altern Med. 2014 Apr;14(1):142. https://doi.org/10.1186/1472-6882-14-142
- 31 Jokinen P, Brück A, Aalto S, Forsback S, Parkkola R, Rinne JO. Impaired cognitive performance in Parkinson’s disease is related to caudate dopaminergic hypofunction and hippocampal atrophy. Parkinsonism Relat Disord. 2009 Feb;15(2):88-93. https://doi.org/10.1016/j.parkreldis.2008.03.005
- 32 Whitehouse PJ, Hedreen JC, White CL 3rd, Price DL. Basal forebrain neurons in the dementia of Parkinson disease. Ann Neurol. 1983 Mar;13(3):243-8. https://doi.org/10.1002/ana.410130304
- 33 Liu AK, Chang RC, Pearce RK, Gentleman SM. Nucleus basalis of Meynert revisited: anatomy, history and differential involvement in Alzheimer’s and Parkinson’s disease. Acta Neuropathol. 2015 Apr;129(4):527-40. https://doi.org/10.1007/s00401-015-1392-5
- 34 Dubois B, Danzé F, Pillon B, Cusimano G, Lhermitte F, Agid Y. Cholinergic-dependent cognitive deficits in Parkinson’s disease. Ann Neurol. 1987 Jul;22(1):26-30. https://doi.org/10.1002/ana.410220108
- 35 Azizi Z, Ebrahimi S, Saadatfar E, Kamalinejad M, Majlessi N. Cognitive-enhancing activity of thymol and carvacrol in two rat models of dementia. Behav Pharmacol. 2012 Jun;23(3):241-9. https://doi.org/10.1097/FBP.0b013e3283534301
- 36 Lauretani F, Galuppo L, Costantino C, Ticinesi A, Ceda G, Ruffini L et al. Parkinson’s disease (PD) with dementia and falls is improved by AChEI? A preliminary study report. Aging Clin Exp Res. 2016 Jun;28(3):551-5. https://doi.org/10.1007/s40520-015-0437-x