RSS-Feed abonnieren

DOI: 10.1590/0004-282X-ANP-2021-0080
Diffusion-weighted imaging as predictor of acute ischemic stroke etiology
Imágenes por difusión cerebral como predictor de la etiología del accidente cerebrovascular isquémico agudo
Abstract
Background: Topographic patterns may correlate with causes of ischemic stroke. Objective: To investigate the association between diffusion-weighted imaging (DWI) and Trial of Org 10172 in Acute Stroke Treatment (TOAST) classification. Methods: We included 1019 ischemic stroke patients. DWI were classified as: i) negative; ii) DWI single lesion (cortico-subcortical, cortical, subcortical ≥20 mm, or subcortical <20 mm); iii) scattered lesions in one territory (small scattered lesions or confluent with additional lesions); and iv) multiple lesions (multiple unilateral anterior circulation [MAC], multiple posterior circulation [MPC], multiple bilateral anterior circulation [MBAC], and multiple anterior and posterior circulations [MAP]). Results: There was a relationship between DWI patterns and TOAST classification (p<0.001). Large artery atherosclerosis was associated with small, scattered lesions in one vascular territory (Odds Ratio [OR] 4.22, 95% confidence interval [95%CI] 2.61–6.8), MPC (OR 3.52; 95%CI 1.54–8.03), and subcortical lesions <20 mm (OR 3.47; 95%CI 1.76–6.85). Cardioembolic strokes correlated with MAP (OR 4.3; 95%CI 1.64–11.2), cortico-subcortical lesions (OR 3.24; 95%CI 1.9–5.5) and negative DWI (OR 2.46; 95%CI 1.1–5.49). Cryptogenic strokes correlated with negative DWI (OR 4.1; 95%CI 1,84–8.69), cortical strokes (OR 3.3; 95%CI 1.25–8.8), MAP (OR 3.33; 95%CI 1.25–8.81) and subcortical lesion ≥20 mm (OR 2.44; 95%CI 1,04–5.73). Lacunar strokes correlated with subcortical lesions diameter <20 mm (OR 42.9; 95%CI 22.7–81.1) and negative DWI (OR 8.87; 95%CI 4.03–19.5). Finally, MBAC (OR 9.25; 95%CI 1.12–76.2), MAP (OR 5.54; 95%CI 1.94–15.1), and MPC (OR 3.61; 95%CI 1.5–8.7) correlated with stroke of other etiologies. Conclusions: A relationship exists between DWI and stroke subtype.
RESUMEN
Antecedentes: Los patrones topográficos pueden correlacionarse con las causas del accidente cerebrovascular isquémico. Objetivo: Investigar la asociación entre imágenes ponderadas por difusión por resonancia nuclear magnética (dRNM) y el ensayo de Org 10172 en la clasificación de tratamiento agudo de accidentes cerebrovasculares (TOAST). Métodos: Fueron incluidos 1.019 pacientes con accidente cerebrovascular isquémico. Las dRNM fueron clasificadas como: i) negativa; ii) dRNM lesión única (cortico-subcortical, cortical, subcortical ≥20 mm, o subcortical <20 mm); iii) lesiones disgregadas un territorio vascular (pequeñas lesiones dispersas o confluentes con lesiones adicionales); y iv) lesiones múltiples (unilaterales de circulación anterior [MAC], de circulación posterior [MPC], bilaterales de circulación anterior [MBAC] y de circulación anterior y posterior [MAP]). Resultados: Existió relación entre los patrones de dRNM y la clasificación TOAST (p<0,001). La aterosclerosis de las arterias grandes se asoció con lesiones pequeñas y disgregadas en un territorio vascular (Odds Ratio [OR] 4,22, intervalo de confianza del 95% [IC95%] 2,61–6,8), MPC (OR 3,52; IC95% 1,54–8,03), y lesiones subcorticales <20 mm (OR 3,47; IC95% 1,76–6,85). Cardioembolias se relacionaron con MAP (OR 4,3; IC95% 1,64–11,2), lesiones cortico-subcorticales (OR 3,24; IC95% 1,9–5,5) y dRNM negativas (OR 2,46; IC95% 1,1–5,49). Los accidentes cerebrovasculares criptogénicos se relacionaron con dRNM negativas (OR 4,1; IC95% 1,84–8,69), accidentes cerebrovasculares corticales (OR 3,3; IC95% 1,25–8,8), MAP (OR 3,33; IC95% 1,25–8,81) y lesiones subcorticales ≥20 mm (OR 2,44; IC95% 1,04–5,73). Los accidentes cerebrovasculares lacunares se correlacionaron con lesiones subcorticales de diámetro <20 mm (OR 42,9; IC95% 22,7–81,1) y dRNM negativas (OR 8,87; IC95% 4,03–19,5). Finalmente, MBAC (OR 9,25; IC95% 1,12–76,2), MAP (OR 5,54; IC95% 1,94–15,1) y MPC (OR 3,61; IC95% 1,5–8,7) se relacionaron con accidentes cerebrovasculares de otras etiologías. Conclusiones: Existe relación entre dRNM y subtipo de accidente cerebrovascular.
Palabras clave:
Accidente Cerebrovascular - Accidente Cerebrovascular Isquémico - Imagen de Difusión por Resonancia Magnética - DiagnósticoAuthors’ contributions:
AB, PL, VO, PM, E Mansilla: conception and design; AB, EMazzon, AR, VN, EMansilla: acquisition of data; AB, GC: analysis and interpretation of data; AB, PL, VO, PM: drafting the article; EMansilla, AR, GC, AR, EMazzon, VN: approval of the version.
Publikationsverlauf
Eingereicht: 06. März 2021
Angenommen: 10. Mai 2021
Artikel online veröffentlicht:
31. Januar 2023
© 2022. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Kolominsky-Rabas PL, Weber M, Gefeller O, Neundoerfer B, Heuschmann PU. Epidemiology of ischemic stroke subtypes according to TOAST criteria: incidence, recurrence, and long-term survival in ischemic stroke subtypes: a population based study. Stroke 2001; Dec; 32 (12) 2735-2740 https://doi.org/10.1161/hs1201.100209
- 2 Adams Jr HP, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL. et al. Classification of subtype of acute ischemic stroke: definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993; Jan; 24 (01) 35-41 https://doi.org/10.1161/01.str.24.1.35
- 3 Brunser AM, Hoppe A, Illanes S, Díaz V, Muñoz P, Cárcamo D. et al. Accuracy of diffusion-weighted imaging in the diagnosis of stroke in patients with suspected cerebral infarct. Stroke 2013; Apr; 44 (04) 1169-1171 https://doi.org/10.1161/STROKEAHA.111.000527
- 4 Brunser AM, Cavada G, Venturelli PM, Olavarría V, Rojo A, Almeida J. et al. Diffusion-weighted imaging determinants for acute ischemic stroke diagnosis in the emergency room. Neuroradiology 2018; Jul; 60 (07) 687-692 https://doi.org/10.1007/s00234-018-2029-x
- 5 Baird AE, Lövblad KO, Schlaug G, Edelman RR, Warach S. Multiple acute stroke syndrome: marker of embolic disease?. Neurology 2000; Feb; 54 (03) 674-678 https://doi.org/10.1212/wnl.54.3.674
- 6 Roh JK, Kang DW, Lee SH, Yoon BW, Chang KH. Significance of acute multiple brain infarction on diffusion-weighted imaging. Stroke 2000; Mar; 31 (03) 688-694 https://doi.org/10.1161/01.str.31.3.688
- 7 Ay H, Oliveira-Filho J, Buonanno FS, Ezzeddine M, Schaefer PW, Rordorf G. et al. Diffusion-weighted imaging identifies a subset of lacunar infarction associated with embolic source. Stroke 1999; Dec; 30 (12) 2644-2650 https://doi.org/10.1161/01.str.30.12.2644
- 8 Chaves CJ, Silver B, Schlaug G, Dashe J, Caplan LR, Warach S. Diffusion- and perfusion-weighted MRI patterns in borderzone infarcts. Stroke 2000; May; 31 (05) 1090-1096 https://doi.org/10.1161/01.str.31.5.1090
- 9 Szabo K, Kern R, Gass A, Hirsch J, Hennerici M. Acute stroke patterns in patients with internal carotid artery disease: a diffusion-weighted magnetic resonance imaging study. Stroke 2001; Jun; 32 (06) 1323-1329 https://doi.org/10.1161/01.str.32.6.1323
- 10 Kang DW, Chu K, Ko SB, Kwon SJ, Yoon BW, Roh JK. Lesion patterns and mechanism of ischemia in internal carotid artery disease: a diffusion-weighted imaging study. Arch Neurol 2002; Oct; 59 (10) 1577-1582 https://doi.org/10.1001/archneur.59.10.1577
- 11 Wessels T, Wessels C, Ellsiepen A, Reuter I, Trittmacher S, Stolz E. et al. Contribution of diffusion-weighted imaging in determination of stroke etiology. AJNR Am J Neuroradiol 2006; Jan; 27 (01) 35-39
- 12 Turtzo LC, Gottesman RF, Llinas RH. Diffusion-weighted imaging showing ‘pearls’ predicts large-vessel disease as stroke etiology. Cerebrovasc Dis 2009; Jun; 28 (01) 49-54 https://doi.org/10.1159/000219297
- 13 Koennecke HC, Bernarding J, Braun J, Faulstich A, Hofmeister C, Nohr R. et al. Scattered brain infarct pattern on diffusion-weighted magnetic resonance imaging in patients with acute ischemic stroke. Cerebrovasc Dis 2001; Apr; 11 (03) 157-163 https://doi.org/10.1159/000047632
- 14 Makin SD, Doubal FN, Dennis MS, Wardlaw JM. Clinically confirmed stroke with negative diffusion-weighted imaging magnetic resonance imaging: longitudinal study of clinical outcomes, stroke recurrence, and systematic review. Stroke 2015; Nov; 46 (11) 3142-3148 https://doi.org/10.1161/STROKEAHA.115.010665
- 15 Caplan L, Wityk R, Pazdera L, Chang HM, Pessin MS, Dewitt LD. New England Medical Center Posterior Circulation Stroke Registry II. Vascular Lesions. J Clin Neurol 2005; Apr; 1 (01) 31-49 https://doi.org/10.3988/jcn.2005.1.1.31
- 16 Lee PH, Oh SH, Bang OY, Joo SY, Joo IS, Huh K. Infarct patterns in atherosclerotic middle cerebral artery versus internal carotid artery disease. Neurology 2004; Apr; 62 (08) 1291-1296 https://doi.org/10.1212/01.wnl.0000120761.57793.28
- 17
Sanna T,
Diener HC,
Passman RS,
Di Lazzaro V,
Bernstein RA,
Morillo CA.
et al.
CRYSTAL AF Investigators. Cryptogenic stroke and underlying atrial fibrillation. N
Engl J Med 2014; Jun;26 370 (26) 2478-2486 https://doi.org/10.1056/NEJMoa1313600
MissingFormLabel
- 18 Singhal AB, Topcuoglu MA, Buonanno FS. Acute ischemic stroke patterns in infective and nonbacterial thrombotic endocarditis: A diffusion-weighted magnetic resonance imaging study. Stroke 2002; May; 33 (05) 1267-1273 https://doi.org/10.1161/01.str.0000015029.91577.36