Subscribe to RSS

DOI: 10.1590/0004-282X-ANP-2020-0591
Evaluation of cerebral hemodynamics by transcranial Doppler ultrasonography and its correlation with intracranial pressure in an animal model of intracranial hypertension
Avaliação da hemodinâmica encefálica utilizando Doppler transcraniano e sua correlação com a pressão intracraniana em um modelo animal de hipertensão intracraniana
ABSTRACT
Background: Transcranial Doppler has been tested in the evaluation of cerebral hemodynamics as a non-invasive assessment of intracranial pressure (ICP), but there is controversy in the literature about its actual benefit and usefulness in this situation. Objective: To investigate cerebral blood flow assessed by Doppler technique and correlate with the variations of the ICP in the acute phase of intracranial hypertension in an animal model. Methods: An experimental animal model of intracranial hypertension was used. The experiment consisted of two groups of animals in which intracranial balloons were implanted and inflated with 4 mL (A) and 7 mL (B) for controlled simulation of different volumes of hematoma. The values of ICP and Doppler parameters (systolic [FVs], diastolic [FVd], and mean [FVm] cerebral blood flow velocities and pulsatility index [PI]) were collected during the entire procedure (before and during hematoma simulations and venous hypertonic saline infusion intervention). Comparisons between Doppler parameters and ICP monitoring were performed. Results: Twenty pigs were studied, 10 in group A and 10 in group B. A significant correlation between PI and ICP was obtained, especially shortly after abrupt elevation of ICP. There was no correlation between ICP and FVs, FVd or FVm separately. There was also no significant change in ICP after intravenous infusion of hypertonic saline solution. Conclusions: These results demonstrate the potential of PI as a parameter for the evaluation of patients with suspected ICP elevation.
RESUMO
Antecedentes: O Doppler transcraniano (DTC) é uma técnica não invasiva para a avaliação da hemodinâmica cerebral, porém existem controvérsias na literatura sobre sua aplicabilidade preditiva em situações de elevada pressão intracraniana (PIC). Objetivo: Investigar o fluxo sanguíneo cerebral pelo DTC e correlacioná-lo com as variações da PIC na fase aguda da hipertensão intracraniana em modelo animal. Métodos: Dois grupos de animais (suínos) foram submetidos a hipertensão intracraniana secundária à indução de diferentes volumes de hematoma, por meio da insuflação de balão intracraniano controlado com 4 e 7 mL de solução salina fisiológica (grupos A e B, respectivamente). Em seguida, administrou-se infusão venosa de solução salina hipertônica (SSH 3%). Foram coletados os valores dos parâmetros de PIC e DTC (velocidade sistólica [FVs], diastólica [FVd] e média [FVm] do fluxo sanguíneo cerebral), bem como o índice de pulsatilidade (IP). Comparações entre os parâmetros do DTC e o monitoramento da PIC foram realizadas. Resultados: Vinte porcos foram estudados, dez no grupo A e dez no grupo B. Correlação significativa entre IP e PIC foi obtida, principalmente logo após a elevação abrupta da PIC. Não houve correlação entre PIC e FVs, FVd ou FVm separadamente. Também não houve alteração significativa na PIC após a infusão de SSH. Conclusões: Esses resultados demonstram o potencial do IP como um bom parâmetro para a avaliação de pacientes com suspeita de elevação da PIC.
Keywords:
Intracranial Pressure - Intracranial Hypertension - Ultrasonography, Doppler, Transcranial - Models, AnimalPalavras-chave:
Pressão Intracraniana - Hipertensão Intracraniana - Ultrassonografia Doppler Transcraniana - Modelos AnimaisAuthors’ contributions:
MSS, AFA, MLO, ARB, WSP: substantial contributions to the design or development of the study; MSS, MLO, ARB: substantial contributions in the collection, analysis and interpretation of data; MSS, EBSS, RCN, DAG, SB: substantial contributions in the writing of the article or in its critical revision; SB, WSP: substantial contributions in the approval of the final version.
Publication History
Received: 06 January 2021
Accepted: 30 April 2021
Article published online:
31 January 2023
© 2022. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Andrade AF, Paiva WS, Amorim RL, Figueiredo EG, Almeida AN, Brock RS. et al. Continuous ventricular cerebrospinal fluid drainage with intracranial pressure monitoring for management of posttraumatic diffuse brain swelling. Arq Neuro-Psiquiatr 2011; Feb; 69 (01) 79-84 https://doi.org/10.1590/s0004-282x2011000100016
- 2 Bor-Seng-Shu E, Kita WS, Figueiredo EG, Paiva WS, Fonoff ET, Teixeira MJ. et al. Cerebral hemodynamics: concepts of clinical importance. Arq Neuro-Psiquiatr 2012; May; 70 (05) 352-356 https://doi.org/10.1590/s0004-282x2012000500010
- 3 Czosnyka M, Hutchinson PJ, Balestreri M, Hiler M, Smielewski P, Pickard JD. Monitoring and interpretation of intracranial pressure after head injury. Acta Neurochir Suppl 2006; 96: 114-118 https://doi.org/10.1007/3-211-30714-1_26
- 4 Fukuda T, Hasue M, Ito H. Does traumatic subarachnoid hemorrhage caused by diffuse brain injury cause delayed ischemic brain damage? Comparison with subarachnoid hemorrhage caused by ruptured intracranial aneurysms. Neurosurgery 1998; Nov; 43 (05) 1040-1049 https://doi.org/10.1097/00006123-199811000-00022
- 5 Adelson PD, Bratton SL, Carney NA, Chesnut RM, du Coudray HEM, Goldstein B. et al. Guidelines for the acute medical management of severe traumatic brain injury in infants, children, and adolescents. Chapter 7. Intracranial pressure monitoring technology. Pediatr Crit Care Med 2003; Jul; 4(3 Suppl) S28-S30
- 6 Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W. et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med 2012; Dec; 367 (26) 2471-2481 https://doi.org/10.1056/NEJMoa1207363
- 7 Zweifel C, Czosnyka M, Carrera E, de Riva N, Pickard JD, Smielewski P. Reliability of the blood flow velocity pulsatility index for assessment of intracranial and cerebral perfusion pressures in head-injured patients. Neurosurgery 2012; Oct; 71 (04) 853-861 https://doi.org/10.1227/NEU.0b013e3182675b42
- 8 Ragauskas A, Matijosaitis V, Zakelis R, Petrikonis K, Rastenyte D, Piper I. et al. Clinical assessment of noninvasive intracranial pressure absolute value measurement method. Neurology 2012; May; 78 (21) 1684-1691 https://doi.org/10.1212/WNL.0b013e3182574f50
- 9 Bellner J, Romner B, Reinstrup P, Kristiansson KA, Ryding E, Brandt L. Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol. 2004 Jul;;62(1):45-51;discussion 51 https://doi.org/10.1016/j.surneu.2003.12.007
- 10 Cardim D, Czosnyka M, Donnelly J, Robba C, Cabella BCT, Liu X. et al. Assessment of non-invasive ICP during CSF infusion test: an approach with transcranial Doppler. Acta Neurochir (Wien). 2016 Feb;;158(2):279-87; discussion 287 https://doi.org/10.1007/s00701-015-2661-8
- 11 Budohoski KP, Schmidt B, Smielewski P, Kasprowicz M, Plontke R, Pickard JD. et al. Non-invasively estimated ICP pulse amplitude strongly correlates with outcome after TBI. Acta Neurochir Suppl 2012; 114: 121-125 https://doi.org/10.1007/978-3-7091-0956-4_22
- 12 Robba C, Bacigaluppi S, Cardim D, Donnelly J, Bertuccio A, Czosnyka M. Non-invasive assessment of intracranial pressure. Acta Neurol Scand 2016; Jul; 134 (01) 4-21 https://doi.org/10.1111/ane.12527
- 13 Gregers MCT, Mikkelsen S, Lindvig KP, Brøchner AC. Ketamine as an anesthetic for patients with acute brain injury: a systematic review. Neurocrit Care 2020; Aug; 33 (01) 273-282 https://doi.org/10.1007/s12028-020-00975-7
- 14 Froese L, Dian J, Batson C, Gomez A, Unger B, Zeiler FA. Cerebrovascular response to propofol, fentanyl, and midazolam in moderate/severe traumatic brain injury: a scoping systematic review of the human and animal literature. Neurotrauma Rep 2020 Oct13;1(1) 100-112 https://doi.org/10.1089/neur.2020.0040
- 15 Andrade AF, Soares MS, Patriota GC, Belon AR, Paiva WS, Bor-Seng-Shu E. et al. Experimental model of intracranial hypertension with continuous multiparametric monitoring in swine. Arq Neuropsiquiatr 2013; Oct; 71 (10) 802-806 https://doi.org/10.1590/0004-282X20130126
- 16 de Lima Oliveira M, Salinet AM, Nogueira RC, Belon AR, Paiva WS, Jeng BCP. et al. The effects of induction and treatment of intracranial hypertension on cerebral autoregulation: an experimental study. Neurol Res Int 2018; Jun; 2018: 7053932-7053932 https://doi.org/10.1155/2018/7053932
- 17 de-Lima-Oliveira M, Ferreira AA, Belon AR, Salinet AM, Nogueira RC, Ping BC. et al. The influence of intracranial hypertension on static cerebral autoregulation. Brain Inj 2020; Jul; 34 (09) 1270-1276 https://doi.org/10.1080/02699052.2020.1797166
- 18 Drikvandi R. Nonlinear mixed-effects models with misspecified random-effects distribution. Pharm Stat 2020; May; 19 (03) 187-201 https://doi.org/10.1002/pst.1981
- 19 Cremer OL, van Dijk GW, van Wensen E, Brekelmans GJF, Moons KGMM, Leenen LPHL. et al. Effect of intracranial pressure monitoring and targeted intensive care on functional outcome after severe head injury. Crit Care Med 2005; Oct; 33 (10) 2207-2213 https://doi.org/10.1097/01.ccm.0000181300.99078.b5
- 20 Aiolfi A, Benjamin E, Khor D, Inaba K, Lam L, Demetriades D. Brain trauma foundation guidelines for intracranial pressure monitoring: compliance and effect on outcome. World J Surg 2017; Jun; 41 (06) 1543-1549 https://doi.org/10.1007/s00268-017-3898-6
- 21 Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy G. et al. The International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: evidentiary tables: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Neurocrit Care 2014; Dec;21(Suppl 2) S297-S361 https://doi.org/10.1007/s12028-014-0081-x
- 22 Cardim D, Robba C, Donnelly J, Bohdanowicz M, Schmidt B, Damian M. et al. Prospective study on noninvasive assessment of intracranial pressure in traumatic brain-injured patients: comparison of four methods. J Neurotrauma 2016; Apr; 33 (08) 792-802 https://doi.org/10.1089/neu.2015.4134
- 23 Robba C, Cardim D, Tajsic T, Pietersen J, Bulman M, Donnelly J. et al. Ultrasound non-invasive measurement of intracranial pressure in neurointensive care: A prospective observational study. PLoS Med 2017; Jul; 14 (07) e1002356 https://doi.org/10.1371/journal.pmed.1002356
- 24 Roh D, Park S. Brain multimodality monitoring: updated perspectives. Curr Neurol Neurosci Rep 2016; Jun; 16 (06) 56-56 https://doi.org/10.1007/s11910-016-0659-0
- 25 Bouzat P, Almeras L, Manhes P, Sanders L, Levrat A, David JS. et al. Transcranial Doppler to predict neurologic outcome after mild to moderate traumatic brain injury. Anesthesiology 2016; Aug; 125 (02) 346-354 https://doi.org/10.1097/ALN.20200591202005911165
- 26 Cardim D, Robba C, Bohdanowicz M, Donnelly J, Cabella B, Liu X. et al. Non-invasive monitoring of intracranial pressure using transcranial doppler ultrasonography: is it possible?. Neurocrit Care 2016; Dec; 25 (03) 473-491 https://doi.org/10.1007/s12028-016-0258-6
- 27 Gura M, Elmaci I, Sari R, Coskun N. Correlation of pulsatility index with intracranial pressure in traumatic brain injury. Turk Neurosurg 2011; 21 (02) 210-215 https://doi.org/10.5137/1019-5149.JTN.3574-10.1
- 28 Czosnyka M, Matta BF, Smielewski P, Kirkpatrick PJ, Pickard JD. Cerebral perfusion pressure in head-injured patients: a noninvasive assessment using transcranial Doppler ultrasonography. J Neurosurg 1998; May; 88 (05) 802-808 https://doi.org/10.3171/jns.1998.88.5.0802
- 29 Melo JR, Di Rocco F, Blanot S, Cuttaree H, Sainte-Rose C, Oliveira-Filho J. et al. Transcranial Doppler can predict intracranial hypertension in children with severe traumatic brain injuries. Childs Nerv Syst 2011; Jun; 27 (06) 979-984 https://doi.org/10.1007/s00381-010-1367-8
- 30 O’Brien NF, Maa T, Reuter-Rice K. Noninvasive screening for intracranial hypertension in children with acute, severe traumatic brain injury. J Neurosurg Pediatr 2015; Oct; 16 (04) 420-425 https://doi.org/10.3171/2015.3.PEDS14521
- 31 Wang Y, Duan YY, Zhou HY, Yuan LJ, Zhang L, Wang W. et al. Middle cerebral arterial flow changes on transcranial color and spectral Doppler sonography in patients with increased intracranial pressure. J Ultrasound Med 2014; Dec; 33 (12) 2131-2136 https://doi.org/10.7863/ultra.33.12.2131
- 32 Figaji AA, Zwane E, Fieggen AG, Siesjo P, Peter JC. Transcranial Doppler pulsatility index is not a reliable indicator of intracranial pressure in children with severe traumatic brain injury. Surg Neurol 2009; Oct; 72 (04) 389-394 https://doi.org/10.1016/j.surneu.2009.02.012
- 33 Hanlo PW, Gooskens RH, Nijhuis IJ, Faber JA, Peters RJ, van Huffelen AC. et al. Value of transcranial Doppler indices in predicting raised ICP in infantile hydrocephalus. A study with review of the literature. Childs Nerv Syst 1995; Oct; 11 (10) 595-603 https://doi.org/10.1007/BF00300999
- 34 Morgalla MH, Magunia H. Noninvasive measurement of intracranial pressure via the pulsatility index on transcranial Doppler sonography: Is improvement possible?. J Clin Ultrasound 2016; Jan; 44 (01) 40-45 https://doi.org/10.1002/jcu.22279
- 35 Diringer MN. New trends in hyperosmolar therapy?. Curr Opin Crit Care 2013; Apr; 19 (02) 77-82 https://doi.org/10.1097/MCC.0b013e32835eba30
- 36 Stocchetti N, Maas AI. Traumatic intracranial hypertension. N Engl J Med 2014; May; 370 (22) 2121-2130 https://doi.org/10.1056/NEJMra1208708
- 37 Huang X, Yang L, Ye J, He S, Wang B. Equimolar doses of hypertonic agents (saline or mannitol) in the treatment of intracranial hypertension after severe traumatic brain injury. Medicine (Baltimore) 2020; Sep; 99 (38) e22004 https://doi.org/10.1097/MD.202005910000022004
- 38 Suarez JI. Hypertonic saline for cerebral edema and elevated intracranial pressure. Cleve Clin J Med 2004; Jan;71(Suppl 1) S9-13 https://doi.org/10.3949/ccjm.71.suppl_1.s9
- 39 Khanna S, Davis D, Peterson B, Fisher B, Tung H, O’Quigley J. et al. Use of hypertonic saline in the treatment of severe refractory posttraumatic intracranial hypertension in pediatric traumatic brain injury. Crit Care Med 2000; Apr; 28 (04) 1144-1151 https://doi.org/10.1097/00003246-200004000-00038
- 40 Prabhakar H, Singh GP, Anand V, Kalaivani M. Mannitol versus hypertonic saline for brain relaxation in patients undergoing craniotomy. Cochrane Database Syst Rev 2014; Jul; 2014 (07) CD010026-CD010026 https://doi.org/10.1002/14651858.CD010026.pub2
- 41 Sokhal N, Rath GP, Chaturvedi A, Singh M, Dash HH. Comparison of 20% mannitol and 3% hypertonic saline on intracranial pressure and systemic hemodynamics. J Clin Neurosci 2017; Aug; 42: 148-154 https://doi.org/10.1016/j.jocn.2017.03.016
- 42 Robba C, Pozzebon S, Moro B, Vincent JL, Creteur J, Taccone FS. Multimodal non-invasive assessment of intracranial hypertension: an observational study. Crit Care 2020; Jun; 24 (01) 379-379 https://doi.org/10.1186/s13054-020-03105-z
- 43 Alexandrov AV, Sloan MA, Wong LK, Douville C, Razumovsky AY, Koroshetz WJ. et al. Practice standards for transcranial Doppler ultrasound: part I--test performance. J Neuroimaging 2007; Jan; 17 (01) 11-18 https://doi.org/10.1111/j.1552-6569.2006.00088.x