CC BY-NC-ND 4.0 · Arq Neuropsiquiatr 2021; 79(04): 321-333
DOI: 10.1590/0004-282X-ANP-2020-0105
VIEW AND REVIEW

Arteriopathy in pediatric stroke: an underestimated clinical entity

Arteriopatia em crianças com acidente vascular cerebral: uma entidade clínica subestimada
1   Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Instituto de Radiologia, São Paulo SP, Brazil.
,
1   Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Instituto de Radiologia, São Paulo SP, Brazil.
,
1   Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Instituto de Radiologia, São Paulo SP, Brazil.
,
1   Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Instituto de Radiologia, São Paulo SP, Brazil.
,
2   Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Instituto de Pediatria, São Paulo SP, Brazil.
,
1   Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Instituto de Radiologia, São Paulo SP, Brazil.
,
1   Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Instituto de Radiologia, São Paulo SP, Brazil.
,
1   Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Instituto de Radiologia, São Paulo SP, Brazil.
› Author Affiliations

ABSTRACT

Background: Pediatric arterial ischemic stroke (AIS), which was thought to be a rare disorder, is being increasingly recognized as an important cause of neurological morbidity, thanks to new advances in neuroimaging. Objective: The aim of this study was to review the main etiologies of stroke due to arteriopathy in children. Methods: Using a series of cases from our institution, we addressed its epidemiological aspects, physiopathology, imaging findings from CT, MR angiography, MR conventional sequences and MR DWI, and nuclear medicine findings. Results: Through discussion of the most recent classification for childhood AIS (Childhood AIS Standardized Classification and Diagnostic Evaluation, CASCADE), we propose a modified classification based on the anatomical site of disease, which includes vasculitis, varicella, arterial dissection, moyamoya, fibromuscular dysplasia, Takayasu's arteritis and genetic causes (such as ACTA-2 mutation, PHACE syndrome and ADA-2 deficiency). We have detailed each of these separately. Conclusions: Prompt recognition of AIS and thorough investigation for potential risk factors are crucial for a better outcome. In this scenario, neurovascular imaging plays an important role in diagnosing AIS and identifying children at high risk of recurrent stroke.

RESUMO

Introdução: O acidente vascular cerebral (AVC) pediátrico, considerado um distúrbio raro, está sendo cada vez mais reconhecido como importante causa de morbidade neurológica, graças aos novos avanços na neuroimagem. Objetivo: Revisar as principais etiologias do AVC por arteriopatia em crianças. Métodos: Utilizando-se de uma série de casos de nossa instituição, abordamos seus aspectos epidemiológicos, fisiopatológicos e de imagem na angiotomografia computadorizada e angiorressonância magnética, sequências convencionais e avançadas de ressonância magnética e medicina nuclear. Resultados: Com base na classificação mais recente de AVC na infância (Classificação Padronizada e Avaliação Diagnóstica do AVC na Infância - CASCADE) propusemos uma classificação modificada com base no local anatômico da doença, que inclui vasculite, varicela, dissecção arterial, Moyamoya, displasia fibromuscular, arterite de Takayasu e causas genéticas (como mutação ACTA-2, síndrome PHACE e deficiência de ADA-2), detalhando cada uma separadamente. Conclusões: O reconhecimento imediato do AVC na infância e a investigação minuciosa de possíveis fatores de risco são cruciais para um melhor resultado. Nesse cenário, a imagem neurovascular desempenha papel importante no diagnóstico de AVC e na identificação de crianças com alto risco de recorrência.

Authors’ contributions:

RP: study conception and design; acquisition of data; analysis and interpretation of data; drafting of manuscript; critical review. LLR: study conception and design; analysis and interpretation; drafting of manuscript. CFTL: study conception and design; analysis and interpretation; drafting of manuscript. YCSN: study conception and design; analysis and interpretation; drafting of manuscript. JAP: drafting of manuscript; critical review. CAPFA: drafting of manuscript; critical review. CCL: drafting of manuscript; critical review. LTL: study conception and design; analysis and interpretation; drafting of manuscript; critical review.




Publication History

Received: 15 April 2020

Accepted: 07 August 2020

Article published online:
01 June 2023

© 2021. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • REFERENCES

  • 1 DeVeber G, Roach ES, Riela AR, Winznizer M. Stroke in children: recognition, treatment, and future directions. Semin Pediatr Neurol. 2000 Dec;7(4):309-17. https://doi.org/10.1053/spen.2000.20074
  • 2 Ganesan V, Hogan A, Shack N, Gordon A, Isaacs E, Kirkham FJ. Outcome after ischaemic stroke in childhood. Dev Med Child Neurol. 2000 Jul;42(7):455-61. https://doi.org/10.1017/s0012162200000852
  • 3 Fullerton HJ, Wu YW, Sidney S, Johnston SC. Risk of recurrent childhood arterial ischemic stroke in a population-based cohort: the importance of cerebrovascular imaging. Pediatrics. 2007 Mar;119(3):495-501. https://doi.org/10.1542/peds.2006-2791
  • 4 Fullerton H, Wintermark M, Hills N, Dowling MM, Tan M, Rafay MF, et al. Risk of recurrent arterial ischemic stroke in childhood: a prospective international study. Stroke. 2016 Jan;47(1):53-9. https://doi.org/10.1161/STROKEAHA.115.011173
  • 5 Mallick AA, Ganesan V, Kirkham FJ, Fallon P, Hedderly T, McShane T, et al. Childhood arterial ischaemic stroke incidence, presenting features, and risk factors: a prospective population-based study. Lancet Neurol. 2014 Jan;13(1):35-43. https://doi.org/10.1016/S1474-4422(13)70290-4
  • 6 Felling RJ, Sun LR, Maxwell EC, Goldenberg N, Bernard T. Pediatric arterial ischemic stroke: epidemiology, risk factors, and management. Blood Cells Mol Dis. 2017 Sep;67:23-33. https://doi.org/10.1016/j.bcmd.2017.03.003
  • 7 Amlie-Lefond C, Sébire G, Fullerton HJ. Recent developments in childhood arterial ischaemic stroke. Lancet Neurol. 2008 May;7(5):425-35. https://doi.org/10.1016/S1474-4422(08)70086-3
  • 8 Husson B, Rodesch G, Lasjaunias P, Tardieu M, Sébire G. Magnetic resonance angiography in childhood arterial brain infarcts: a comparative study with contrast angiography. Stroke. 2002 May;33(5):1280-5. https://doi.org/10.1161/01.str.0000014504.18199.0d
  • 9 Husson B, Lasjaunias P. Radiological approach to disorders of arterial brain vessels associated with childhood arterial stroke - a comparison between MRA and contrast angiography. Pediatr Radiol. 2004 Jan;34(1):10-5. https://doi.org/10.1007/s00247-003-1109-0
  • 10 Rollins N, Dowling M, Booth T, Purdy P. Idiopathic ischemic cerebral infarction in childhood: depiction of arterial abnormalities by MR angiography and catheter angiography. AJNR Am J Neuroradiol. 2000 Mar;21(3):549-56.
  • 11 Bash S, Villablanca JP, Jahan R, Duckwiler G, Tillis M, Kidwell C, et al. Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography. AJNR Am J Neuroradiol. 2005 May;26(5):1012-21.
  • 12 MacKay MT, Wiznitzer M, Benedict SL, Lee KJ, Deveber GA, Ganesan V. Arterial ischemic stroke risk factors: the international pediatric stroke study. Ann Neurol. 2011 Jan;69(1):130-40. https://doi.org/10.1002/ana.22224
  • 13 Wintermark M, Hills N, DeVeber G, Barkovich AJ, Elkind MSV, Sear K, et al. Arteriopathy Diagnosis in Childhood Arterial Ischemic Stroke Results of the VIPS Study. Stroke. 2014 Dec;45(12):3597-605. https://doi.org/10.1161/STROKEAHA.114.007404
  • 14 Mineyko A, Kirton A. Mechanisms of pediatric cerebral arteriopathy: an inflammatory debate. Pediatr Neurol. 2013 Jan;48(1):14-23. https://doi.org/10.1016/j.pediatrneurol.2012.06.021
  • 15 Bernard TJ, Manco-Johnson MJ, Lo W, MacKay MT, Ganesan V, DeVeber G, et al. Towards a consensus-based classification of childhood arterial ischemic stroke. Stroke. 2012 Feb;43(2):371-7. https://doi.org/10.1161/STROKEAHA.111.624585
  • 16 Bernard TJ, Beslow LA, Manco-Johnson MJ, Armstrong-Wells J, Boada R, Weitzenkamp D, et al. Inter-Rater Reliability of the CASCADE Criteria: challenges in classifying arteriopathies. Stroke. 2016 Oct;47(10):2443-9. https://doi.org/10.1161/STROKEAHA.116.013544
  • 17 Aviv RI, Benseler SM, Silverman ED, et al. MR imaging and angiography of primary CNS vasculitis of childhood. AJNR Am J Neuroradiol. 2006 Jan;27(1):192-9.
  • 18 Twilt M, Benseler SM. The spectrum of CNS vasculitis in children and adults. Nat Rev Rheumatol. 2011 Dec 20;8(2):97-107. https://doi.org/10.1038/nrrheum.2011.197
  • 19 Mirsky DM, Beslow LA, Amlie-Lefond C, Krishnan P, Laughlin S, Lee S, et al. Pathways for neuroimaging of childhood stroke. Pediatr Neurol. 2017 Apr;69:11-23. https://doi.org/10.1016/j.pediatrneurol.2016.12.004
  • 20 Pomper MG, Miller TJ, Stone JH, Tidmore WC, Hellmann DB. CNS vasculitis in autoimmune disease: MR imaging findings and correlation with angiography. AJNR Am J Neuroradiol. 1999 Jan;20(1):75-85.
  • 21 Moharir M, Shroff M, Benseler SM. Childhood central nervous system vasculitis. Neuroimaging Clin N Am. 2013 May;23(2):293-308. https://doi.org/10.1016/j.nic.2012.12.008
  • 22 Benseler S. Central nervous system vasculitis in children. Curr Rheumatol Rep. 2006 Dec;8(6):442-9. https://doi.org/10.1007/s11926-006-0040-4
  • 23 Benseler SM, Silverman E, Aviv RI, Schneider R, Armstrong D, Tyrrell PN. Primary central nervous system vasculitis in children. Arthritis Rheum. 2006 Apr;54(4):1291-7. https://doi.org/10.1002/art.21766
  • 24 Askalan R, Laughlin S, Mayank S, Chan A, MacGregor D, Andrew M, et al. Chickenpox and stroke in childhood: A study of frequency and causation. Stroke. 2001 Jun;32(6):1257-62. https://doi.org/10.1161/01.str.32.6.1257
  • 25 Russman AN, Lederman RJ, Calabrese D, Embi PJ, Forghani B, Gilden DH. Multifocal varicella-zoster virus vasculopathy without rash. Arch Neurol. 2003 Nov;60(11):1607-9. https://doi.org/10.1001/archneur.60.11.1607
  • 26 Gilden D, Cohrs RJ, Mahalingam R, Nagel MA. Varicella zoster virus vasculopathies: diverse clinical manifestations, laboratory features, pathogenesis, and treatment. Lancet Neurol. 2009 Aug;8(8):731-40. https://doi.org/10.1016/S1474-4422(09)70134-6
  • 27 Nagel M, Cohrs R, Mahalingam R, Wellish MC, Forghani B, Schiller A, et al. The varicella zoster vasculopathies: Clinical, Csf, imaging and virologic features. Neurology. 2008 Mar;70(11):853-60. https://doi.org/10.1212/01.wnl.0000304747.38502.e8
  • 28 Tan M a, DeVeber G, Kirton A, Vidarsson L, MacGregor D, Shroff M. Low detection rate of craniocervical arterial dissection in children using time-of-flight magnetic resonance angiography: causes and strategies to improve diagnosis. J Child Neurol. 2009 Oct;24(10):1250-7. https://doi.org/10.1177/0883073809333539
  • 29 Fullerton HJ, Johnston SC, Smith WS. Arterial dissection and stroke in children. Neurology. 2001 Oct 9;57(7):1155-60. https://doi.org/10.1212/wnl.57.7.1155
  • 30 Rafay MF, Armstrong D, Deveber G, Domi T, Chan A, MacGregor DL. Craniocervical arterial dissection in children: clinical and radiographic presentation and outcome. J Child Neurol. 2006 Jan;21(1):8-16. https://doi.org/10.1177/08830738060210010101
  • 31 Chabrier S, Husson B, Lasjaunias P, Landrieu P, Tardieu M. Stroke in childhood: outcome and recurrence risk by mechanism in 59 patients. J Child Neurol. 2000 May;15(5):290-4. https://doi.org/10.1177/088307380001500504
  • 32 Flis CM, Jäger HR, Sidhu PS. Carotid and vertebral artery dissections: clinical aspects, imaging features and endovascular treatment. Eur Radiol. 2007 Mar;17(3):820-34. https://doi.org/10.1007/s00330-006-0346-7
  • 33 Mortazavi MM, Verma K, Tubbs RS, Harrigan M. Pediatric traumatic carotid, vertebral and cerebral artery dissections: A review. Childs Nerv Syst. 2011 Dec;27(12):2045-56. https://doi.org/10.1007/s00381-011-1409-x
  • 34 Lévy C, Laissy JP, Raveau V, Amarenco P, Servois V, Bousser MG, et al. Carotid and vertebral artery dissections: three-dimensional time-of-flight MR angiography and MR imaging versus convetional angiography. Radiology. 1994 Jan;190(1):97-103. https://doi.org/10.1148/radiology.190.1.8259436
  • 35 Kim ST, Brinjikji W, Lanzino G, Kallmes DF. Neurovascular manifestations of connective-tissue diseases: A review. Interv Neuroradiol. 2016 Dec;22(6):624-37. https://doi.org/10.1177/1591019916659262
  • 36 Suzuki J, Takaku A. Cerebrovascular “Moyamoya” disease: disease showing abnormal net-like vessels in base of brain. Arch Neurol. 1969 Mar;20(3):288-99. https://doi.org/10.1001/archneur.1969.00480090076012
  • 37 Bang OY, Fujimura M, Kim S-K. The pathophysiology of Moyamoya disease: An Update. J Stroke. 2016 Jan;18(1):12-20. https://doi.org/10.5853/jos.2015.01760
  • 38 Smith ER, Scott RM. Spontaneous occlusion of the circle of Willis in children: pediatric moyamoya summary with proposed evidence-based practice guidelines. J Neurosurg Pediatr. 2012 Apr;9(4):353-60. https://doi.org/10.3171/2011.12.PEDS1172
  • 39 Yun T jin, Cheon J-E, Na DG, Kim WS, Kim IO, Chang KH, et al. Childhood moyamoya disease: Quantitative evaluation of perfusion MR imaging - Correlation with clinical outcome after revascularization surgery. Radiology. 2009 Apr;251(1):216-23. https://doi.org/10.1148/radiol.2511080654
  • 40 Kirton A, Crone M, Benseler S, Mineyko A, Armstrong D, Wade A, et al. Fibromuscular dysplasia and childhood stroke. Brain. 2013 Jun;136(Pt 6):1846-56. https://doi.org/10.1093/brain/awt111
  • 41 Slovut DP, Olin JW. Fibromuscular dysplasia. N Engl J Med. 2004 Apr;350(18):1862-71. https://doi.org/10.1056/NEJMra032393
  • 42 Touzé E, Oppenheim C, Trystram D, Nokam G, Pasquini M, Alamowitch S, et al. Fibromuscular dysplasia of cervical and intracranial arteries. Int J Stroke. 2010 Aug;5(4):296-305. https://doi.org/10.1111/j.1747-4949.2010.00445.x
  • 43 Fraga A, Medina F. Takayasu's Arteritis. Curr Rheumatol Rep. 2002 Feb;4(1):30-8. https://doi.org/10.1007/s11926-002-0021-1
  • 44 Cakar N, Yalcinkaya F, Duzova A, Caliskan S, Sirin A, Oner A,et al. Takayasu arteritis in children. J Rheumatol. 2008 May;35(5):913-9.
  • 45 Ozen S, Pistorio A, Iusan SM, Bakkaloglu A, Herlin T, Brik R, et al. EULAR/PRINTO/PRES criteria for Henoch-Schonlein purpura, childhood polyarteritis nodosa, childhood Wegener granulomatosis and childhood Takayasu arteritis: Ankara 2008. Part II: Final classification criteria. Ann Rheum Dis. 2010 May;69(5):798-806. https://doi.org/10.1136/ard.2009.116657
  • 46 Khanna G, Sargar K, Baszis KW. Pediatric vasculitis: recognizing multisystemic manifestations at body imaging. Radiographics. May-Jun 2015;35(3):849-65. https://doi.org/10.1148/rg.2015140076
  • 47 McCulloch M, Andronikou S, Goddard E, Sinclair P, Lawrenson J, Mandelstam S, et al. Angiographic features of 26 children with Takayasu’s arteritis. Pediatr Radiol. 2003 Apr;33(4):230-5. https://doi.org/10.1007/s00247-002-0817-1
  • 48 Guo D-C, Papke CL, Tran-Fadulu V, Regalado ES, Avidan N, Johnson RJ, et al. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and moyamoya disease, along with thoracic aortic disease. Am J Hum Genet. 2009 May;84(5):617-27. https://doi.org/10.1016/j.ajhg.2009.04.007
  • 49 Amans MR, Stout C, Fox C, Narvid J, Hetts SW, Cooke DL, et al. Cerebral arteriopathy associated with Arg179His ACTA2 mutation. BMJ Case Rep. 2013 Nov;2013:bcr2013010997. https://doi.org/10.1136/bcr-2013-010997
  • 50 de Grazia J, Delgado I, Sanchez-Montanez A, Boronat S, del Campo M, Vazquez E. Cerebral arteriopathy associated with heterozygous Arg179Cys mutation in the ACTA2 gene: Report in 2 newborn siblings. Brain Dev. 2017 Jan;39(1):62-6. https://doi.org/10.1016/j.braindev.2016.08.003
  • 51 Metry D, Heyer G, Hess C, Garzon M, Haggstrom A, Frommelt P, et al. Consensus Statement on Diagnostic Criteria for PHACE Syndrome. Pediatrics. 2009 Nov;124(5):1447-56. https://doi.org/10.1542/peds.2009-0082
  • 52 Metry DW, Garzon MC, Drolet BA, Frommelt P, Haggstrom A, Hall J, et al. PHACE syndrome: current knowledge, future directions. Pediatr Dermatol. Jul-Aug 2009;26(4):381-98. https://doi.org/10.1111/j.1525-1470.2009.00944.x
  • 53 Pascual-Castroviejo I. Vascular and nonvascular intracranial malformations associated with external capillary hemangiomas. Neuroradiology. 1978;16:82-4. https://doi.org/10.1007/BF00395211
  • 54 Baccin CE, Krings T, Álvarez H, Ozanne A, Lasjaunias PL. A report of two cases with dolichosegmental intracranial arteries as a new feature of PHACES syndrome. Childs Nerv Syst. 2007 May;23(5):559-67. https://doi.org/10.1007/s00381-006-0247-8
  • 55 Heyer GL, Dowling MM, Licht DJ, Tay SKH, Morel K, Garzon MC, et al. The cerebral vasculopathy of PHACES syndrome. Stroke. 2008 Feb;39(2):308-16. https://doi.org/10.1161/STROKEAHA.107.485185
  • 56 Burrows PE, Robertson RL, Mulliken JB, Beardsley DS, Chaloupka JC, Ezekowitz RA, et al. Cerebral vasculopathy and neurologic sequelae in infants with cervicofacial hemangioma: report of eight patients. Radiology. 1998 Jun;207(3):601-7. https://doi.org/10.1148/radiology.207.3.9609880
  • 57 Drolet BA, Dohil M, Golomb MR, Wells R, Murowski L, Tamburro J, et al. Early stroke and cerebral vasculopathy in children with facial hemangiomas and PHACE Association. Pediatrics. 2006 Mar;117(3):959-64. https://doi.org/10.1542/peds.2005-1683
  • 58 Hess CP, Fullerton HJ, Metry DW, Drolet BA, Siegel DH, Auguste KI, et al. Cervical and intracranial arterial anomalies in 70 patients with PHACE syndrome. AJNR Am J Neuroradiol. 2010 Nov;31(10):1980-6. https://doi.org/10.3174/ajnr.A2206
  • 59 Caorsi R, Penco F, Grossi A, Insalaco A, Omenetti A, Alessio M, et al. ADA2 deficiency (DADA2) as an unrecognised cause of early onset polyarteritis nodosa and stroke: a multicentre national study. Ann Rheum Dis. 2017;76(10):1648-56. http://dx.doi.org/10.1136/annrheumdis-2016-210802
  • 60 Zhou Q, Yang D, Ombrello AK, Zavialov AV, Toro C, Zavialov AV, et al. Early Onset Stroke and Vasculopathy Associated with Mutations in ADA2. N Engl J Med. 2014 Mar;370(10):911-20. https://doi.org/10.1056/NEJMoa1307361