Tierarztl Prax Ausg G Grosstiere Nutztiere 2015; 43(02): 97-104
DOI: 10.15653/TPG-130904
Original Article
Schattauer GmbH

Influence of cryopreservation and mechanical stimulation on equine Autologous Conditioned Plasma (ACP®)

Einfluss von Kryokonservierung und mechanischer Stimulation auf Autologous Conditioned Plasma (ACP®) von Pferden
M. Mageed
1   Large Animal Clinic for Surgery, University of Leipzig, Germany;
3   Department of Surgery and Anesthesia, Faculty of Veterinary Medicine, University of Khartoum, Sudan
,
C. Ionita
1   Large Animal Clinic for Surgery, University of Leipzig, Germany;
,
C. Kissich
1   Large Animal Clinic for Surgery, University of Leipzig, Germany;
,
W. Brehm
1   Large Animal Clinic for Surgery, University of Leipzig, Germany;
,
K. Winter
2   Translational Center for Regenerative Medicine, University of Leipzig, Germany;
,
J.-C. Ionita
1   Large Animal Clinic for Surgery, University of Leipzig, Germany;
› Author Affiliations
Further Information

Publication History

Received: 14 October 2013

Accepted after revision: 10 March 2014

Publication Date:
10 January 2018 (online)

Summary

Objective: To determine the influence of cryopreservation at two different temperatures on platelet concentration, growth factor (GF) levels and platelet activation parameters in equine ACP®; moreover, to determine if adding mechanical ACP® stimulation to freeze-thaw activation amplifies GF release from platelets. Material and methods: Firstly, blood from five horses was used to prepare ACP®. Platelet, platelet derived growth factor BB (PDGF-BB) and transforming growth factor β1 (TGF-β1) concentrations as well as mean platelet volume (MPV) and mean platelet component (MPC) were determined in fresh and corresponding ACP® samples after 2 months cryopreservation at –20 °C and –80 °C, respectively. Secondly, ACP® was prepared from blood of nine horses. Half of ACP® was activated using one freeze-thaw-cycle at –20 °C, whereas the rest was first vortexed. Their PDGF-BB and TGF-β1 concentrations were subsequently determined. Results: Platelet concentration significantly decreased after –80 °C cryopreservation. PDGF-BB level augmented significantly after both storage methods, whereas TGF-β1 concentration was not significantly altered. MPV significantly increased after –20 °C cryopreservation. Both storage regimens induced a significant MPC decrease. No significant differences in GF concentrations between the vortexed and nonvortexed samples were detected. Discussion: Both cryopreservation methods induced platelet activation, but storage at –80 °C apparently harmed the platelets without generating higher GF release than –20 °C. The mechanical stimulation process could not enhance GF release in subsequently frozen-thawed ACP®. Conclusion and clinical relevance: Storage of ACP® at –20 °C could be useful in equine practice, but, before this procedure can be recommended, further qualitative tests are needed. The mechanical stimulation technique should be adjusted in order to increase platelet activation.

Zusammenfassung

Gegenstand und Ziel: Untersucht wurde der Einfluss der Kryokonservierung bei verschiedenen Temperaturen auf die Konzentration von Thrombozyten und Wachstumsfaktoren (WF) sowie die Thrombozyten-Aktivierungsparameter in equinem ACP® (Autologous Conditioned Plasma). Zudem wurde geprüft, ob eine mechanische ACP®-Stimula tion vor einer Einfrier-Auftau-Aktivierung die Freisetzung von WF aus den Blutplättchen verstärkt. Material und Methoden: Zunächst erfolgte die Herstellung von ACP® aus Blut von fünf Pferden. Die Kon zentrationen von Thrombozyten, Platelet Derived Growth Factor BB (PDGF-BB) und Transforming Growth Factor β1 (TGF-β1) sowie das mittlere Thrombozytenvolumen (Mean Platelet Volume, MPV) und die mittlere Thrombozytendichte (Mean Platelet Component, MPC) wur den in frischen und jeweils in für 2 Monate bei –20 °C und –80 °C kryokonservierten ACP®-Proben gemessen. Außerdem wurde ACP® aus dem Blut von neun Pferden vorbereitet. Eine Hälfte des ACP® wurde mit einem Einfrier-Auftau-Zyklus bei –20 °C aktiviert, der Rest wurde vor diesem Vorgang mit einem Rüttler geschüttelt. Dem schloss sich die Bestimmung der PDGF-BB- und TGF-β1-Konzentration in den Proben an. Ergebnisse: Nach Kryokonservierung bei –80 °C verringerte sich die Thrombozytenkonzentration signifikant. Beide Gefriertemperatu ren induzierten einen signifikanten Anstieg der PDGF-BB-Konzentra tion, ohne den TGF-β1-Gehalt signifikant zu beeinflussen. Das MPV stieg nach der Kryokonservierung bei –20 °C signifikant an. Die MPC nahm bei beiden Gefriertemperaturen signifikant ab. Die geschüttelten und nicht geschüttelten Proben differierten bezüglich der WF-Konzentration nicht signifikant. Diskussion: Beide Gefriertemperaturen induzierten eine Thrombozytenaktivierung, aber die Lagerung bei –80 °C schädigte die Zellen, ohne höhere WF-Konzentrationen als bei –20 °C zu erzeugen. Die mechanische Stimulation konnte die WF-Ausschüttung in eingefrorenem-aufgetautem ACP® nicht verstärken. Schlussfolgerung und klinische Relevanz: Die Kryokonservierung von ACP® bei –20 °C könnte ein praxistaugliches Verfahren darstellen. Vor einer Empfehlung bedarf es weiterer Qualitäts tests. Die mechanische Stimulation muss angepasst werden, um die Thrombozyten stärker aktivieren zu können.

 
  • References

  • 1 Argüelles D, Carmona J, Climent F, Muñoz E, Prades M. Autologous platelet concentrates as a treatment for musculoskeletal lesions in five horses. Vet Rec 2008; 162: 208-211.
  • 2 Bosch G, van Schie HT, de Groot MW, Cadby JA, van de Lest CH, Barneveld A, van Weeren PR. Effects of platelet-rich plasma on the quality of repair of mechanically induced core lesions in equine superficial digital flexor tendons: A placebo-controlled experimental study. J Orthop Res 2010; 28: 211-217.
  • 3 Boswell SG, Cole BJ, Sundman EA, Karas V, Fortier LA. Platelet-rich plasma: a milieu of bioactive factors. Arthroscopy 2012; 28: 429-439.
  • 4 Carmona J, Argüelles D, Climent F, Prades M. Autologous platelet concentrates as a treatment of horses with osteoarthritis: A preliminary pilot clinical study. J Equine Vet Sci 2007; 27: 167-170.
  • 5 Carter CA, Jolly DG, Worden CE, Hendren DG, Kane CJM. Platelet-rich plasma gel promotes differentiation and regeneration during equine wound healing. Exp Mol Pathol 2003; 74: 244-255.
  • 6 Clark P, Mogg TD, Tvedten HW, Korcal D. Artifactual changes in equine blood following storage, detected using the Advia 120 hematology analyzer. Vet Clin Pathol 2002; 31: 90-94.
  • 7 Dunkel B, Bolt DM, Smith RK, Cunningham FM. Stimulus-dependent release of tissue-regenerating factors by equine platelets. Equine Vet J 2012; 44: 346-354.
  • 8 Eppley BL, Pietrzak WS, Blanton M. Platelet-rich plasma: a review of biology and applications in plastic surgery. Plast Reconstr Surg 2006; 118: 147e-159e.
  • 9 Estrada R, van Weeren R, van de Lest C, Boere J, Reyes M, Ionita J-C, Estrada M, Lischer C. Effects of Autologous Conditioned Plasma® (ACP) on the healing of surgically induced core lesions in equine superficial digital flexor tendon. Pferdeheilk 2014; 30: 633-642.
  • 10 Filardo G, Kon E, Buda R, Timoncini A, Di Martino A, Cenacchi A, Fornasari PM, Giannini S, Marcacci M. Platelet-rich plasma intra-articular knee injections for the treatment of degenerative cartilage lesions and osteoarthritis. Knee Surg Sports Traumatol Arthrosc 2011; 19: 528-535.
  • 11 Geburek F, Lietzau M, Beineke A, Rohn K, Stadler P. Einsatz von Irap® als unterstützende Therapie bei Läsionen der oberflächlichen Beugesehne. Proceedings of the 20th Equitana Congress. Essen, Germany: 2013: 110-114.
  • 12 Giordano A, Rossi G, Pieralisi C, Paltrinieri S. Evaluation of equine hemograms using the ADVIA 120 as compared with an impedance counter and manual differential count. Vet Clin Pathol 2008; 37: 21-30.
  • 13 Giraldo CE, Lopez C, Alvarez ME, Samudio IJ, Prades M, Carmona JU. Effects of the breed, sex and age on cellular content and growth factor release from equine pure-platelet rich plasma and pure-platelet rich gel. BMC Vet Res 2013; 9: 29.
  • 14 Hessel LN, Bosch G, van Weeren PR, Ionita JC. Equine autologous platelet concentrates: A comparative study between different available systems. Equine Vet J. 2014 [Epub ahead of print, doi: DOI: 10.1111/evj.12288 ].
  • 15 Ito Y, Nakachi K, Imai K, Hashimoto S, Watanabe Y, Inaba Y, Tamakoshi A, Yoshimura T. Stability of frozen serum levels of insulin-like growth factor-I, insulin-like growth factor-II, insulin-like growth factor binding protein-3, transforming growth factor beta, soluble Fas, and superoxide dismutase activity for the JACC study. J Epidemiol 2005; 15: 67-73.
  • 16 Kissich C, Gottschalk J, Lochmann G, Einspanier A, Böttcher P, Winter K, Brehm W, Ionita J-C. Biochemische Eigenschaften des equinen Autologous Conditioned Plasma® (ACP). Pferdeheilk 2012; 28: 258-267.
  • 17 Kon E, Filardo G, Di Matteo B, Di Martino A, Marcacci M. Platelet-rich plasma in sports medicine: new treatment for tendon and cartilage lesions. Oper Tech Orthop 2012; 22: 78-85.
  • 18 Lacoste E, Martineau I, Gagnon G. Platelet concentrates: effects of calcium and thrombin on endothelial cell proliferation and growth factor release. J Periodontol 2003; 74: 1498-1507.
  • 19 Lei H, Gui L, Xiao R. The effect of anticoagulants on the quality and biological efficacy of platelet-rich plasma. Clin Biochem 2009; 42: 1452-1460.
  • 20 Lippi G, Musa R, Aloe R, Mercadanti M, Pipitone S. Influence of temperature and period of freezing on the generation of hemolysate and blood cell lysate. Clin Biochem 2011; 44: 1267-1269.
  • 21 Martineau I, Lacoste E, Gagnon G. Effects of calcium and thrombin on growth factor release from platelet concentrates: kinetics and regulation of endothelial cell proliferation. Biomaterials 2004; 25: 4489-4502.
  • 22 McCarrel T, Fortier L. Temporal growth factor release from platelet-rich plasma, trehalose lyophilized platelets, and bone marrow aspirate and their effect on tendon and ligament gene expression. J Orthop Res 2009; 27: 1033-1042.
  • 23 Miyazaki Y, Nomura S, Miyake T, Kagawa H, Kitada C, Taniguchi H, Komiyama Y, Fujimura Y, Ikeda Y, Fukuhara S. High shear stress can initiate both platelet aggregation and shedding of procoagulant containing micro-particles. Blood 1996; 88: 3456-3464.
  • 24 Park IJ, Lim YA, Cho SR. Usefulness of delta value of platelet parameters on ADVIA 120 for the functional reactivity of stored platelets. J Clin Lab Anal 2010; 24: 38-43.
  • 25 Pelagalli A, Lombardi P, d’Angelo D, Della Morte R, Avallone L, Staiano N. Species variability in platelet aggregation response to different agonists. J Comp Pathol 2002; 127: 126-132.
  • 26 Perrotta PL, Snyder EL. Platelet storage and transfusion. In: Platelets. Michelson AD. ed. Amsterdam: Academic Press; 2007: 1265-1295.
  • 27 Piccione G, Casella S, Giannetto C, Assenza A, Caola G. Effect of different storage conditions on platelet aggregation in horse. J Equine Vet Sci 2010; 30: 371-375.
  • 28 Pietramaggiori G, Scherer SS, Mathews JC, Gennaoui T, Lancerotto L, Ragno G, Valeri CR, Orgill DP. Quiescent platelets stimulate angiogenesis and diabetic wound repair. J Surg Res 2010; 160: 169-177.
  • 29 Prins M, Leeuwen MW, Teske E. Stability and reproducibility of ADVIA 120-measured red blood cell and platelet parameters in dogs, cats, and horses, and the use of reticulocyte haemoglobin content (CHR) in the diagnosis of iron deficiency. Tijdschr Diergeneeskd 2009; 134: 272-278.
  • 30 Ricco S, Boone L, Peroni JF. Regenerative Medicine. In: Equine Surgery. Auer J, Stick J. eds. St. Louis, Missouri, USA: Saunders Elsevier; 2011: 85-97.
  • 31 Rindermann G, Cislakova M, Arndt G, Carstanjen B. Autologous conditioned plasma as therapy of tendon and ligament lesions in seven horses. J Vet Sci 2010; 11: 173-175.
  • 32 Segura D, Monreal L, Armengou L, Tarancon I, Brugues R, Escolar G. Mean platelet component as an indicator of platelet activation in foals and adult horses. J Vet Intern Med 2007; 21: 1076-1082.
  • 33 Sekido Y, Morishima Y, Ohya Ki. Activity of platelet-derived growth factor (PDGF) in platelet concentrates and cryopreserved platelets determined by PDGF bioassay. Vox Sang 1987; 52: 27-30.
  • 34 Smith RK. Pathophysiology of tendon injury. In: Diagnosis and Management of Lameness in the Horse. 2nd edn.. Ross MW, Dyson SJ. eds. St. Louis, Missouri, USA: Saunders Elsevier; 2011: 694-706.
  • 35 Sutter WW, Kaneps AJ, Bertone AL. Comparison of hematologic values and transforming growth factor-beta and insulin-like growth factor concentrations in platelet concentrates obtained by use of buffy coat and apheresis methods from equine blood. Am J Vet Res 2004; 65: 924-930.
  • 36 Textor JA, Norris JW, Tablin F. Effects of preparation method, shear force, and exposure to collagen on release of growth factors from equine platelet-rich plasma. Am J Vet Res 2011; 72: 271-278.
  • 37 Textor JA, Tablin F. Activation of equine platelet-rich plasma: Comparison of methods and characterization of equine autologous thrombin. Vet Surg 2012; 41: 784-794.
  • 38 Textor JA, Tablin F. Intra-articular use of a platelet-rich product in normal horses: clinical signs and cytologic responses. Vet Surg 2013; 42: 499-510.
  • 39 Weibrich G, Kleis WK, Hafner G, Hitzler WE. Growth factor levels in platelet-rich plasma and correlations with donor age, sex, and platelet count. J Craniomaxillofac Surg 2002; 30: 97-102.
  • 40 Wurzinger L, Opitz R, Wolf M, Schmid-Schönbein H. Ultrastructural investigations on the question of mechanical activation of blood platelets. Blut 1987; 54: 97-107.
  • 41 Zimmermann R, Arnold D, Strasser E, Ringwald J, Schlegel A, Wiltfang J, Eckstein R. Sample preparation technique and white cell content influence the detectable levels of growth factors in platelet concentrates. Vox Sang 2003; 85: 283-289.