RSS-Feed abonnieren

DOI: 10.15265/IY-2017-041
An Assessment of Imaging Informatics for Precision Medicine in Cancer
Publikationsverlauf
Publikationsdatum:
11. September 2017 (online)

Summary
Objectives: Precision medicine requires the measurement, quantification, and cataloging of medical characteristics to identify the most effective medical intervention. However, the amount of available data exceeds our current capacity to extract meaningful information. We examine the informatics needs to achieve precision medicine from the perspective of quantitative imaging and oncology.
Methods: The National Cancer Institute (NCI) organized several workshops on the topic of medical imaging and precision medicine. The observations and recommendations are summarized herein.
Results: Recommendations include: use of standards in data collection and clinical correlates to promote interoperability; data sharing and validation of imaging tools; clinician’s feedback in all phases of research and development; use of open-source architecture to encourage reproducibility and reusability; use of challenges which simulate real-world situations to incentivize innovation; partnership with industry to facilitate commercialization; and education in academic communities regarding the challenges involved with translation of technology from the research domain to clinical utility and the benefits of doing so.
Conclusions: This article provides a survey of the role and priorities for imaging informatics to help advance quantitative imaging in the era of precision medicine. While these recommendations were drawn from oncology, they are relevant and applicable to other clinical domains where imaging aids precision medicine.
-
References
- 1
Ashley EA.
The precision medicine initiative: a new national effort. JAMA 2015; 313 (21) 2119-20.
MissingFormLabel
- 2
National Research Council.
Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and
a New Taxonomy of Disease. Washington (DC): 2011
MissingFormLabel
- 3
Hsu W,
Markey MK,
Wang MD.
Biomedical imaging informatics in the era of precision medicine: progress, challenges,
and opportunities. J Am Med Inform Assoc 2013; 20 (06) 1010-3.
MissingFormLabel
- 4
Yankeelov TE,
Mankoff DA,
Schwartz LH,
Lieberman FS,
Buatti JM,
Mountz JM.
et al. (2016) Quantitative Imaging in Cancer Clinical Trials. Clin Cancer Res 2016;
22 (02) 284-90.
MissingFormLabel
- 5
NRC.
Toward precision medicine: building a knowledge network for biomedical research and
a new taxonomy of disease. National Academies Press; (US): 2011
MissingFormLabel
- 6
Thrall JH.
Moreton Lecture: Imaging in the Age of Precision Medicine. J Am Coll Radiol 2015;
12 (10) 1106-11.
MissingFormLabel
- 7
Herold CJ,
Lewin JS,
Wibmer AG,
Thrall JH,
Krestin GP,
Dixon AK.
et al. Imaging in the Age of Precision Medicine: Summary of the Proceedings of the
10th Biannual Symposium of the International Society for Strategic Studies in Radiology.
Radiology 2016; 279 (01) 226-38.
MissingFormLabel
- 8
Thrall JH.
Personalized medicine. Radiology 2004; 231 (03) 613-6.
MissingFormLabel
- 9
Sutton EJ,
Oh JH,
Dashevsky BZ,
Veeraraghavan H,
Apte AP,
Thakur SB.
et al. Breast cancer subtype intertumor heterogeneity: MRI-based features predict
results of a genomic assay. J Magn Reson Imaging 2015; 42 (05) 1398-406.
MissingFormLabel
- 10
Cooper LA,
Kong J,
Gutman DA,
Wang F,
Gao J,
Appin C,
et al.
Integrated morphologic analysis for the identification and characterization of disease
subtypes. J Am Med Inform Assoc 2012; 19 (02) 317-23.
MissingFormLabel
- 11
de la Fuente MI,
Young RJ,
Rubel J,
Rosenblum M,
Tisnado J,
Briggs S,
et al.
Integration of 2-hydroxyglutarate-proton magnetic resonance spectroscopy into clinical
practice for disease monitoring in isocitrate dehydrogenase-mutant glioma. Neuro Oncol
2016; 18 (02) 283-90.
MissingFormLabel
- 12
Siddiqui MM,
Truong H,
Rais-Bahrami S,
Stamatakis L,
Logan J,
Walton-Diaz A.
et al. Clinical implications of a multiparametric magnetic resonance imaging based
nomogram applied to prostate cancer active surveillance. J Urol 2015; 193 (06) 1943-9.
MissingFormLabel
- 13
Giardino A,
Gupta S,
Olson E,
Sepulveda K,
Lenchik L,
Ivanidze J.
et al. Role of Imaging in the Era of Precision Medicine. Acad Radiol 2017; 24 (05)
639-49.
MissingFormLabel
- 14
Sullivan DC,
Obuchowski NA,
Kessler LG,
Raunig DL,
Gatsonis C,
Huang EP,
Group R-QMW.
et al. Metrology Standards for Quantitative Imaging Biomarkers. Radiology 2015; 277
(03) 813-25.
MissingFormLabel
- 15
Raunig DL,
McShane LM,
Pennello G,
Gatsonis C,
Carson PL,
Voyvodic JT,
Group QTPW.
et al. Quantitative imaging biomarkers: a review of statistical methods for technical
performance assessment. Stat Methods Med Res 2015; 24 (01) 27-67.
MissingFormLabel
- 16
Nordstrom RJ.
The Quantitative Imaging Network in Precision Medicine. Tomography 2016; 02 (04) 239-41.
MissingFormLabel
- 17
Mangla R,
Singh G,
Ziegelitz D,
Milano MT,
Korones DN,
Zhong J.
et al. Changes in Relative Cerebral Blood Volume 1 Month after Radiation-Temozolomide
Therapy Can Help Predict Overall Survival in Patients with Glioblastoma. Radiology
2010; 256 (02) 575-84.
MissingFormLabel
- 18
Aerts HJ,
Velazquez ER,
Leijenaar RT,
Parmar C,
Grossmann P,
Carvalho S.
et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics
approach. Nat Commun 2014; 05: 4006.
MissingFormLabel
- 19
Kumar V,
Gu Y,
Basu S,
Berglund A,
Eschrich SA,
Schabath MB.
et al. Radiomics: the process and the challenges. Magn Reson Imaging 2012; 30 (09)
1234-48.
MissingFormLabel
- 20
Lambin P,
Rios-Velazquez E,
Leijenaar R,
Carvalho S,
van Stiphout RG,
Granton P.
et al. Radiomics: extracting more information from medical images using advanced feature
analysis. Eur J Cancer 2012; 48 (04) 441-6.
MissingFormLabel
- 21
Buckler AJ,
Bresolin L,
Dunnick NR,
Sullivan DC.
Group Ft. Quantitative Imaging Test Approval and Biomarker Qualification: Interrelated
but Distinct Activities. Radiology 2011; 259 (03) 875-84.
MissingFormLabel
- 22
Clarke LP,
Croft BS,
Nordstrom R,
Zhang H,
Kelloff G,
Tatum J.
Quantitative imaging for evaluation of response to cancer therapy. Transl Oncol 2009;
02 (04) 195.
MissingFormLabel
- 23
Clarke LP,
Sriram RD,
Schilling LB.
Imaging as a biomarker: standards for change measurements in therapy workshop summary.
Acad Radiol 2008; 15 (04) 501-30.
MissingFormLabel
- 24
Eliceiri KW,
Berthold MR,
Goldberg IG,
Ibanez L,
Manjunath BS,
Martone ME.
et al. Biological imaging software tools. Nat Meth 2012; 09 (07) 697-710.
MissingFormLabel
- 25
Fedorov A,
Beichel R,
Kalpathy-Cramer J,
Finet J,
Fillion-Robin J-C,
Pujol S.
et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network.
Magn Reson Imaging 2012; 30 (09) 1323-41.
MissingFormLabel
- 26
Gatenby RA,
Grove O,
Gillies RJ.
Quantitative Imaging in Cancer Evolution and Ecology. Radiology 2013; 269 (01) 8-14.
MissingFormLabel
- 27
Gillies R.
Radiomics: informing cancer heterogeneity. J Nucl Med 2013; 54: 31.
MissingFormLabel
- 28
Greve DN,
Fischl B.
Accurate and robust brain image alignment using boundary-based registration. Neuroimage
2009; 48 (01) 63.
MissingFormLabel
- 29
Hunter L.
Radiomics of NSCLC: Quantitative CT Image Feature Characterization and Tumor Shrinkage
Prediction. MS: University of Texas Graduate School of Biomedical Sciences at Houston;
2013
MissingFormLabel
- 30
Kalpathy-Cramer J,
Freymann JB,
Kirby JS,
Kinahan PE,
Prior FW.
Quantitative Imaging Network: Data Sharing and Competitive AlgorithmValidation Leveraging
The Cancer Imaging Archive. Transl Oncol 2014; 07 (01) 147-52.
MissingFormLabel
- 31
Kuo MD,
Gollub J,
Sirlin CB,
Ooi C,
Chen X.
Radiogenomic Analysis to Identify Imaging Phenotypes Associated with Drug Response
Gene Expression Programs in Hepatocellular Carcinoma. J Vasc Interv Radiol 2007; 18
(07) 821-30.
MissingFormLabel
- 32
Rutman AM,
Kuo MD.
Radiogenomics: Creating a link between molecular diagnostics and diagnostic imaging.
Eur J Radiol 2009; 70 (02) 232-41.
MissingFormLabel
- 33
Sivakumar S,
Chandrasekar C.
Lung Nodule Detection Using Fuzzy Clustering and Support Vector Machines. International
Journal of Engineering and Technology 2013; 05: 179-85.
MissingFormLabel
- 34
Veiga C,
McClelland J,
Moinuddin S,
Laurenco A,
Ricketts K,
Modat M.
et al. Adaptive radiotherapy for head and neck patients: evaluation of a deformable
registration-based “dose of the day” calculation. International Journal of Radiation:
Oncology-Biology-Physics. 2013
MissingFormLabel
- 35
Waterton JC,
Pylkkanen L.
Qualification of imaging biomarkers for oncology drug development. E J Cancer 2012;
48 (04) 409-15.
MissingFormLabel
- 36
Gurcan MN,
Pan T,
Shimada H,
Saltz J.
Image analysis for neuroblastoma classification: segmentation of cell nuclei. Conf
Proc IEEE Eng Med Biol Soc 2006; 01: 4844-7.
MissingFormLabel
- 37
Ross JC,
Estepar RS,
Diaz A,
Westin CF,
Kikinis R,
Silverman EK.
et al. Lung extraction, lobe segmentation and hierarchical region assessment for quantitative
analysis on high resolution computed tomography images. Med Image Comput Comput Assist
Interv 2009; 12 (Pt 2) 690-8.
MissingFormLabel
- 38
Sertel O,
Kong J,
Shimada H,
Catalyurek UV,
Saltz JH,
Gurcan MN.
Computer-aided Prognosis of Neuroblastoma on Whole-slide Images: Classification of
Stromal Development. Pattern Recognit 2009; 02 (06) 1093-103.
MissingFormLabel
- 39
Gutman DA,
Cooper LA,
Hwang SN,
Holder CA,
Gao J,
Aurora TD.
et al. MR imaging predictors of molecular profile and survival: multi-institutional
study of the TCGA glioblastoma data set. Radiology 2013; 267 (02) 560-9.
MissingFormLabel
- 40
Velazquez ER,
Parmar C,
Jermoumi M,
Mak RH,
van Baardwijk A,
Fennessy FM.
et al. Volumetric CT-based segmentation of NSCLC using 3D-Slicer. Scientific Reports
2013; 03: 3529.
MissingFormLabel
- 41
Colen R,
Foster I,
Gatenby R,
Giger ME,
Gillies R,
Gutman D.
et al. NCI Workshop Report: Clinical and Computational Requirements for Correlating
Imaging Phenotypes with Genomics Signatures. Transl Oncol 2014; 07 (05) 556-69.
MissingFormLabel
- 42
Parmar C,
Rios EVelazquez,
Leijenaar R,
Jermoumi M,
Carvalho S,
Mak RH.
et al. Robust Radiomics feature quantification using semiautomatic volumetric segmentation.
PloS One 2014; 09 (07) e102107.
MissingFormLabel
- 43
Coroller TP,
Grossmann P,
Hou Y,
Rios EVelazquez,
Leijenaar RT,
Hermann G.
et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma.
Radiother Oncol 2015; 114 (03) 345-50.
MissingFormLabel
- 44
Parmar C,
Leijenaar RT,
Grossmann P,
Rios EVelazquez,
Bussink J,
Rietveld D.
et al. Radiomic feature clusters and prognostic signatures specific for Lung and Head
& Neck cancer. Sci Rep 2015; 05: 11044.
MissingFormLabel
- 45
Basavanhally AN,
Ganesan S,
Agner S,
Monaco JP,
Feldman MD,
Tomaszewski JE.
et al. Computerized image-based detection and grading of lymphocytic infiltration
in HER2+ breast cancer histopathology. IEEE Trans Biomed Eng 2010; 57 (03) 642-53.
MissingFormLabel
- 46
Chen W,
Chu V,
Hu J,
Yang L,
Wang F,
Kurc T.
et al. ImageMiner: a medical image analysis and image management UML data model. APIII:
Advancing Practice, Instruction & Innovation Through Informatics; Pittsburgh, PA:
2009
MissingFormLabel
- 47
Cholleti S,
Cooper L,
Kong J,
Chisolm C,
Brat D,
Gutman D.
et al. Classification of brain tumor regions. Boston, MA: Pathology Informatics; 2010
MissingFormLabel
- 48
Cooper L,
Kong J,
Gutman D,
Wang F,
Cholleti S,
Pan T.
et al. An Integrative Approach for In Silico Glioma Research. IEEE Trans Biomed Eng
2010; 57 (10) 2617-21.
MissingFormLabel
- 49
Cooper L,
Kong J,
Gutman D,
Wang F,
Cholleti S,
Pan T.
et al. Integrative Analysis of Image and Molecular Data for Study of Brain Tumors.
The NCI-NCRI Informatics Initiative Joint Conference: Biomedical Informatics without
Borders: Implementing Interoperability; Bethesda, MD: 2010
MissingFormLabel
- 50
Cooper LAD,
Carter AB,
Farris AB,
Wang F,
Kong J,
Gutman DA.
et al. Digital Pathology: Data Intensive Frontier in Medical Imaging. Proc IEEE Inst
Electr Electron Eng 2012; 100 (04) 991-1003.
MissingFormLabel
- 51
Foran DJ,
Yang L,
Chen W,
Hu J,
Goodell LA,
Reiss M.
et al. ImageMiner: a software system for comparative analysis of tissue microarrays
using content-based image retrieval, high-performance computing, and grid technology.
J Am Med Inform Assoc 2011; 18 (04) 403-15.
MissingFormLabel
- 52
Fuchs TJ,
Buhmann JM.
Computational pathology: Challenges and promises for tissue analysis. Comput Med Imaging
Grap 2011; 35 (07) 515-30.
MissingFormLabel
- 53
Gao Y,
Tannenbaum A.
Combining Atlas and Active Contour for Automatic 3d Medical Image Segmentation. Proc
IEEE Int Symp Biomed Imaging. 2011: 1401-4.
MissingFormLabel
- 54
Gao Y,
Tannenbaum A,
Chen H,
Torres M,
Yoshida E,
Yang XF.
et al. Automated Skin Segmentation in Ultrasonic Evaluation of Skin Toxicity in Breast
Cancer Radiotherapy. Ultrasound Med Biol 2013; 39 (11) 2166-75.
MissingFormLabel
- 55
Gurcan MN,
Boucheron L,
Can A,
Madabhushi A,
Rajpoot N,
Yener B.
Histopathological Image Analysis: A Review. IEEE Rev Biomed Eng 2009; 02: 147-71.
MissingFormLabel
- 56
Huang K,
Mosaliganti K,
Cooper LAD,
Machiraju R.
Quantitative phenotyping using microscopic images. In:
Rittscher J,
Machiraju R,
Wong STC.
(eds) Microscopic Image Analysis for Life Science Applications. Boston, MA, USA: Artech
House; 2008
MissingFormLabel
- 57
Huang PW,
Lee CH.
Automatic classification for pathological prostate images based on fractal analysis.
IEEE Trans Med Imaging 2009; 28 (07) 1037-50.
MissingFormLabel
- 58
Kong J,
Sertel O,
Shimada H,
Boyer K,
Saltz J,
Gurcan M.
Computer-aided grading of neuroblastic differentiation: Multi-resolution and multi-classifier
approach. IEEE International Conference on Image Processing. 2007 05. V-525
MissingFormLabel
- 59
Lu C,
Mahmood M,
Jha N,
Mandal M.
Automated Segmentation of the Melanocytes in Skin Histopathological Images. IEEE J
Biomed Health Inform 2013; 17 (02) 284-96.
MissingFormLabel
- 60
Lu C,
Mandal M.
Automated Segmentation and Analysis of the Epidermis Area in Skin Histopathological
Images. 2012 Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC). 2012: 5355-9.
MissingFormLabel
- 61
Martone ME,
Zhang S,
Gupta A,
Qian X,
He H,
Price DL.
et al. The cell-centered database: a database for multiscale structural and protein
localization data from light and electron microscopy. Neuroinformatics 2003; 01 (04)
379-95.
MissingFormLabel
- 62
McKeen-Polizzotti L,
Henderson KM,
Oztan B,
Bilgin CC,
Yener B,
Plopper GE.
Quantitative metric profiles capture three-dimensional temporospatial architecture
to discriminate cellular functional states. BMC Medical Imaging 2011; 11 (01) 11.
MissingFormLabel
- 63
Michailovitch O,
Rathi Y,
Tannenbaum A.
Image segmentation using active contours driven by the Bhattacharyya gradient flow.
IEEE Trans Image Processing 2007; 16: 2787-801.
MissingFormLabel
- 64
Monaco J,
Tomaszewski J,
Feldman M,
Moradi M,
Mousavi P,
Boag A.
et al. Detection of prostate cancer from whole-mount histology images using Markov
random fields. Workshop on Microscopic Image Analysis with Applications in Biology
(in conjunction with MICCAI). 2008
MissingFormLabel
- 65
Oztan B,
Kong H,
Gürcan MN,
Yener B.
Follicular lymphoma grading using cell-graphs and multi-scale feature analysis. Proc
SPIE 2012; 8315: 831516-831511.
MissingFormLabel
- 66
Phan J,
Quo C,
Cheng C,
Wang M.
Multi-Scale Integration of-omic, Imaging, and Clinical Data in Biomedical Informatics.
IEEE Rev Biomed Eng 2012; 05: 74-87.
MissingFormLabel
- 67
Pieper S,
Lorensen B,
Schroeder W,
Kikinis R.
The NA-MIC Kit: ITK, VTK, pipelines, grids and 3D slicer as an open platform for the
medical image computing community. 3rd IEEE International Symposium on Biomedical
Imaging: Nano to Macro. 2016: 698-701.
MissingFormLabel
- 68
Qi X,
Kim H,
Xing F,
Parashar M,
Foran DJ,
Yang L.
The analysis of image feature robustness using CometCloud. J Pathol Inform. 2012:
3-33.
MissingFormLabel
- 69
Song Y,
Treanor D,
Bulpitt AJ,
Magee DR.
3D reconstruction of multiple stained histology images. J Pathol Inform 2013; 04 (Suppl)
S7.
MissingFormLabel
- 70
Tay CH.
Algorithms for Tissue Image Analysis using Multifractal Techniques. Master of Science
Thesis. University of Canterbury. Computer Science and Software Engineering. 2012
MissingFormLabel
- 71
Viros A,
Fridlyand J,
Bauer J,
Lasithiotakis K,
Garbe C,
Pinkel D.
et al. Improving melanoma classification by integrating genetic and morphologic features.
PLoS Medicine 2008; 05 (06) e120.
MissingFormLabel
- 72
Yang L,
Tuzel O,
Chen W,
Meer P,
Salaru G,
Goodell LA.
et al. PathMiner: a web-based tool for computer-assisted diganostics in pathology.
IEEE Trans Inf Technol Biomed 2009; 13 (03) 291-99.
MissingFormLabel
- 73
Zhu LJ,
Gao Y,
Appia V,
Yezzi A,
Arepalli C,
Faber T.
et al. Automatic Delineation of the Myocardial Wall From CT Images Via Shape Segmentation
and Variational Region Growing. IEEE Trans Biomed Eng 2013; 60 (10) 2887-95.
MissingFormLabel
- 74
Grove O,
Berglund AE,
Schabath MB,
Aerts HJ,
Dekker A,
Wang H.
et al. Quantitative computed tomographic descriptors associate tumor shape complexity
and intratumor heterogeneity with prognosis in lung adenocarcinoma. PloS One 2015;
10 (03) e0118261.
MissingFormLabel
- 75
Ghaznavi F,
Evans A,
Madabhushi A,
Feldman M.
Digital imaging in pathology: whole-slide imaging and beyond. Annu Rev Pathol 2013;
08: 331-59.
MissingFormLabel
- 76
Gurcan MN,
Madabhushi A.
Digital Pathology. Proc SPIE 2013; 8676: 867601-867601.
MissingFormLabel
- 77
Wang C,
Pécot T,
Zynger DL,
Machiraju R,
Shapiro CL,
Huang K.
Identifying survival associated morphological features of triple negative breast cancer
using multiple datasets. J Am Med Inform Assoc 2013; 20 (04) 680-7.
MissingFormLabel
- 78
Hamilton PW,
Bankhead P,
Wang Y,
Hutchinson R,
Kieran D,
McArt DG.
et al. Digital pathology and image analysis in tissue biomarker research. Methods
2014; 70 (01) 59-73.
MissingFormLabel
- 79
Gurcan MN,
Madabhushi A.
Medical Imaging 2015: Digital Pathology. Proc SPIE 2015; 9420: 942001-942001.
MissingFormLabel
- 80
Beck AH,
Sangoi AR,
Leung S,
Marinelli RJ,
Nielsen TO,
van de Vijver MJ.
et al. Systematic analysis of breast cancer morphology uncovers stromal features associated
with survival. Sci Transl Med 2011; 03 (108) 108ra113.
MissingFormLabel
- 81
Dong F,
Irshad H,
Oh EY,
Lerwill MF,
Brachtel EF,
Jones NC.
et al. Computational pathology to discriminate benign from malignant intraductal proliferations
of the breast. PloS One 2014; 09 (12) e114885.
MissingFormLabel
- 82
Qi X,
Wang D,
Rodero I,
Diaz-Montes J,
Gensure RH,
Xing F.
et al. Content-based histopathology image retrieval using CometCloud. BMC Bioinformatics
2014; 15: 287.
MissingFormLabel
- 83
Hai S,
Yong S,
Fuyong X,
Xin Q,
Hirshfeld KM,
Lin Y.
et al. Robust automatic breast cancer staging using a combination of functional genomics
and imageomics. Conf Proc IEEE Eng Med Biol Soc. 2015: 7226-9.
MissingFormLabel
- 84
Cheng J,
Hipp J,
Monaco J,
Lucas DR,
Madabhushi A,
Balis UJ.
Automated vector selection of SIVQ and parallel computing integration MATLAB: Innovations
supporting large-scale and high-throughput image analysis studies. J Pathol Inform
2011; 02: 37.
MissingFormLabel
- 85
Hipp J,
Smith SC,
Cheng J,
Tomlins SA,
Monaco J,
Madabhushi A.
et al. Optimization of complex cancer morphology detection using the SIVQ pattern
recognition algorithm. Anal Cell Pathol (Amsterdam) 2012; 35 (01) 41-50.
MissingFormLabel
- 86
Gevaert O,
Xu J,
Hoang CD,
Leung AN,
Xu Y,
Quon A.
et al. Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging
public gene expression microarray data--methods and preliminary results. Radiology
2012; 264 (02) 387-96.
MissingFormLabel
- 87
Parmar C,
Grossmann P,
Bussink J,
Lambin P,
Aerts HJ.
Machine Learning methods for Quantitative Radiomic Biomarkers. Sci Rep 2015; 05: 13087.
MissingFormLabel
- 88
Fedorov A,
Clunie D,
Ulrich E,
Bauer C,
Wahle A,
Brown B.
et al. DICOM for quantitative imaging biomarker development: a standards based approach
to sharing clinical data and structured PET/CT analysis results in head and neck cancer
research. PeerJ 2016; 04: e2057.
MissingFormLabel
- 89
Boettiger C.
An introduction to Docker for reproducible research. ACM SIGOPS Operating Systems
Review 2015; 49 (01) 71-9.
MissingFormLabel
- 90 NCI Genomic Cloud Pilots.
MissingFormLabel
- 91
Jacobsen DM,
Canon RS.
Contain this, unleashing docker for hpc. Proceedings of the Cray User Group. 2015
MissingFormLabel
- 92
Roelofs E,
Dekker A,
Meldolesi E,
van Stiphout RGPM,
Valentini V,
Lambin P.
International data-sharing for radiotherapy research: An open-source based infrastructure
for multicentric clinical data mining. Radiother Oncol 2014; 110 (02) 370-4.
MissingFormLabel
- 93
Goode A,
Gilbert B,
Harkes J,
Jukic D,
Satyanarayanan M.
OpenSlide: A vendor-neutral software foundation for digital pathology. J Pathol Inform
2013; 04: 27.
MissingFormLabel
- 94
Toga AW.
2012; The clinical value of large neuroimaging data sets in Alzheimer’s disease. Neuroimaging
clinics of North America 22 (01) 107.
MissingFormLabel
- 95
Grethe JS,
Baru C,
Gupta A,
James M,
Ludaescher B,
Martone ME.
et al. Biomedical informatics research network: building a national collaboratory
to hasten the derivation of new understanding and treatment of disease. Stud Health
Technol Inform 2005; 112: 100-10.
MissingFormLabel
- 96
Marcus D,
Harwell J,
Olsen T,
Hodge M,
Glasser M,
Prior F.
et al. Informatics and Data Mining Tools and Strategies for the Human Connectome Project.
Front Neuroinform 2011; 05 (04) 1-12.
MissingFormLabel
- 97
Marcus DS,
Wang TH,
Parker J,
Csernansky JG,
Morris JC,
Buckner RL.
Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI Data in Young,
Middle Aged, Nondemented, and Demented Older Adults. J Cogn Neurosci 2007; 19 (09)
1498-507.
MissingFormLabel
- 98
Hall D,
Huerta MF,
McAuliffe MJ,
Farber GK.
Sharing heterogeneous data: the national database for autism research. Neuroinformatics
2012; 10 (04) 331-9.
MissingFormLabel
- 99
Korfiatis PD,
Kline TL,
Blezek DJ,
Langer SG,
Ryan WJ,
Erickson BJ.
MIRMAID: A Content Management System for Medical Image Analysis Research. Radiographics
2015; 35 (05) 1461-8.
MissingFormLabel
- 100
Moore SM,
Maffitt DR,
Smith KE,
Kirby JS,
Clark KW,
Freymann JB.
et al. De-identification of Medical Images with Retention of Scientific Research Value.
Radiographics 2015; 35 (03) 727-35.
MissingFormLabel
- 101
Fedorov A,
Beichel R,
Kalpathy-Cramer J,
Finet J,
Fillion-Robin J-C,
Pujol S.
et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network.
Magn Reson Imaging 2012; 30 (09) 1323-41.
MissingFormLabel
- 102 Grand Challenges in Biomedical Image Analysis. https://grand-challenge.org/ Accessed 2017-07-01.
MissingFormLabel
- 103
Cooper LA,
Kong J,
Gutman DA,
Wang F,
Cholleti SR,
Pan TC.
et al. An integrative approach for in silico glioma research. IEEE Trans Biomed Eng
2010; 57 (10) 2617-21.
MissingFormLabel
- 104
Wang C,
Pecot T,
Zynger DL,
Machiraju R,
Shapiro CL,
Huang K.
Identifying survival associated morphological features of triple negative breast cancer
using multiple datasets. J Am Med Inform Assoc 2013; 20 (04) 680-7.
MissingFormLabel
- 105
Doi K,
Giger ML,
Nishikawa RM,
Hoffmann KR,
Macmahon H,
Schmidt RA,
et al.
Digital Radiography. A useful clinical tool for computer-aided diagnosis by quantitative
analysis of radiographic images. Acta Radiol 1993; 34 (05) 426-39.
MissingFormLabel
- 106
Lo S-CB,
Lin J-S,
Freedman MT,
Mun SK.
Computer-assisted diagnosis of lung nodule detection using artificial convoultion
neural network. Medical Imaging 1993. International Society for Optics and Photonics.
1993: 859-69.
MissingFormLabel
- 107
Sahiner B,
Chan HP,
Petrick N,
Wei D,
Helvie MA,
Adler DD.
et al. Classification of mass and normal breast tissue: a convolution neural network
classifier with spatial domain and texture images. IEEE Trans Med Imaging 1996; 15
(05) 598-610.
MissingFormLabel
- 108
Greenspan H,
Ginneken Bv,
Summers RM.
Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an
Exciting New Technique. IEEE Trans Med Imaging 2016; 35 (05) 1153-9.
MissingFormLabel
- 109
Menze BH,
Jakab A,
Bauer S,
Kalpathy-Cramer J,
Farahani K,
Kirby J.
et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans
Med Imaging 2015; 34 (10) 1993-2024.
MissingFormLabel
- 110
Bhargava R,
Madabhushi A.
Emerging Themes in Image Informatics and Molecular Analysis for Digital Pathology.
Annu Rev Biomed Eng 2016; 18: 387-412.
MissingFormLabel
- 111
Mongkolwat P,
Kleper V,
Talbot S,
Rubin D.
The National Cancer Informatics Program (NCIP) Annotation and Image Markup (AIM) Foundation
model. J Digit Imaging 2014; 27 (06) 692-701.
MissingFormLabel
- 112
Müller H,
Kalpathy-Cramer J,
Hanbury A,
Farahani K,
Sergeev R,
Paik JH.
et al. Report on the Cloud-Based Evaluation Approaches Workshop 2015. ACM SIGIR Forum
2016; 50: 38-41.
MissingFormLabel
- 113
Moreira DA,
Hage C,
Luque EF,
Willrett D,
Rubin DL.
3D markup of radiological images in ePAD, a web-based image annotation tool. Computer-Based
Medical Systems (CBMS), 2015 IEEE 28th International Symposium on. IEEE. 2015: 97-102.
MissingFormLabel
- 114
Belmann P,
Dröge J,
Bremges A,
McHardy AC,
Sczyrba A,
Barton MD.
Bioboxes: standardised containers for interchangeable bioinformatics software. Gigascience
2015; 04 (01) 47.
MissingFormLabel
- 115
Rubin DL.
The electronic Imaging Physician Annotation Device (ePAD). 2017
MissingFormLabel
- 116
Keller BM,
Chen J,
Daye D,
Conant EF,
Kontos D.
Preliminary evaluation of the publicly available Laboratory for Breast Radiodensity
Assessment (LIBRA) software tool: comparison of fully automated area and volumetric
density measures in a case-control study with digital mammography. Breast Cancer Res
2015; 17: 117.
MissingFormLabel
- 117
Toolkit DD.
DCMTK. 2010
MissingFormLabel
- 118
Torvalds L,
Hamano J.
Git: Fast version control system. 2010 URL http://git-scm.com
MissingFormLabel
- 119
Merkel D.
Docker: lightweight linux containers for consistent development and deployment. Linux
Journal 2014; (239) 2.
MissingFormLabel
- 120
Di Tommaso P,
Palumbo E,
Chatzou M,
Prieto P,
Heuer ML,
Notredame C.
The impact of Docker containers on the performance of genomic pipelines. PeerJ 2015;
03: e1273.
MissingFormLabel
- 121
Fridsma DB,
Evans J,
Hastak S,
Mead CN.
The BRIDG project: a technical report. J Am Med Inform Assoc 2008; 15 (02) 130-137.
MissingFormLabel
- 122
Singer DS,
Jacks T,
Jaffee E.
2016; A US “Cancer Moonshot” to accelerate cancer research. Science 353 6304 1105-6.
MissingFormLabel
- 123
Grossman RL,
Heath AP,
Ferretti V,
Varmus HE,
Lowy DR,
Kibbe WA.
et al. Toward a shared vision for cancer genomic data. New Engl J Med 2016; 375 (12)
1109-12.
MissingFormLabel
- 124 caMicroscope - A Web Based Annotation and Visualization Platform for Digitized Whole
Slide Images. https://github.com/camicroscope/caMicroscope Accessed 2017-07-01.
MissingFormLabel