Thromb Haemost 2011; 105(S 06): S13-S33
DOI: 10.1160/THS10-11-0720
Thrombosis and Haemostasis Supplement
Schattauer GmbH

Platelets, inflammation and tissue regeneration

Alan T. Nurden
1   Centre de Référence des Pathologies Plaquettaires, Plateforme Technologique et d‘Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France
› Author Affiliations
Further Information

Publication History

Received: 12 November 2010

Accepted: 04 February 2011

Publication Date:
06 December 2017 (online)

Summary

Blood platelets have long been recognised to bring about primary haemostasis with deficiencies in platelet production and function manifesting in bleeding while upregulated function favourises arterial thrombosis. Yet increasing evidence indicates that platelets fulfil a much wider role in health and disease. First, they store and release a wide range of biologically active substances including the panoply of growth factors, chemokines and cytokines released from α-granules. Membrane budding gives rise to microparticles (MPs), another active participant within the blood stream. Platelets are essential for the innate immune response and combat infection (viruses, bacteria, micro-organisms). They help maintain and modulate inflammation and are a major source of pro-inflammatory molecules (e.g. P-selectin, tissue factor, CD40L, metalloproteinases). As well as promoting coagulation, they are active in fibrinolysis; wound healing, angiogenesis and bone formation as well as in maternal tissue and foetal vascular remodelling. Activated platelets and MPs intervene in the propagation of major diseases. They are major players in atherosclerosis and related diseases, pathologies of the central nervous system (Alzheimers disease, multiple sclerosis), cancer and tumour growth. They participate in other tissue-related acquired pathologies such as skin diseases and allergy, rheumatoid arthritis, liver disease; while, paradoxically, autologous platelet-rich plasma and platelet releasate are being used as an aid to promote tissue repair and cellular growth. The above mentioned roles of platelets are now discussed.

 
  • References

  • 1 Weyrich A, Lindemann S, Zimmerman GA. The evolving role of platelets in inflammation. J Thromb Haemost 2003; 1: 1897-1905.
  • 2 Nurden AT, Nurden P, Sanchez M. et al. Platelets and wound healing. Front Biosci 2008; 13: 3525-3548.
  • 3 Zhang Q, Peyruchaud O, French KJ. et al. Sphingosine 1-phosphate stimulates fibronectin matrix assembly through a Rho-dependent signal pathway. Blood 1999; 93: 2984-2990.
  • 4 Takeya H, Gabazza EC, Aoki S. et al. Synergistic effect of sphingosine 1-phosphate on thrombin-induced tissue factor expression in endothelial cells. Blood 2003; 102: 1693-1700.
  • 5 Ryo J, Kim HJ, Chang E-J. et al. Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling. EMBO J 2006; 25: 5840-5851.
  • 6 Panetti TS, Hannah DF, Avraamides C. et al. Extracellular matrix molecules regulate endothelial cell migration stimulated by lysophosphatidic acid. J Thromb Haemost 2004; 2: 1645-1656.
  • 7 Boucharaba A, Serre C-M, Grès S. et al. Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J Clin Invest 2004; 114: 1714-1725.
  • 8 Kulkarni S, Woollard KJ, Thomas S. et al. Conversion of platelets from a pro-aggregatory to a pro-inflammatory adhesive phenotype: role of PAF in spatially regulating neutrophil adhesion and spreading. Blood 2007; 110: 1879-1886.
  • 9 Lefebvre JS, Marleau S, Milot V. et al. Toll-like receptor ligands induce polymorphonuclear leukocyte migration: key roles for leukotriene B4 and platelet-activating factor. FASEB J 2010; 24: 637-647.
  • 10 Baldassarri S, Bertoni A, Bagarotti A. et al. The endocannabinoid 2-arachidonyl glycerol activates human platelets through non-CB1/CB2 receptors. J Thromb Haemost 2008; 6: 1772-1779.
  • 11 Coppinger JA, Cagney G, Toomey S. et al. Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood 2004; 103: 2096-2104.
  • 12 Reed GL. Platelet secretory mechanisms. Semin Thromb Hemost 2004; 30: 441-450.
  • 13 Kahner BN, Shankar H, Murugapppan S. et al. Nucleotide receptor signalling in platelets. J Thromb Haemost 2006; 4: 2317-2326.
  • 14 Grenegard M, Vretenbrant-Oberg K, Nylander M. et al. The ATP-gated P2X1 receptor plays a pivotal role in activation of aspirin-treated platelets by thrombin and epinephrine. J Biol Chem 2008; 283: 18493-18504.
  • 15 Burnstock G. Purinergic signaling and vascular cell proliferation and death. Arterioscler Thromb Vasc Biol 2002; 22: 364-373.
  • 16 Lansdown AB. Calcium: a potential central regulator in wound healing in the skin. Wound Repair Regen 2002; 10: 271-285.
  • 17 Caen J, Wu Q. Hageman factor, platelets and polyphosphates, early history and recent connection. J Thromb Haemost 2010; 8: 1670-1674.
  • 18 Murata S, Ohkohchi N, Matsuo R. et al. Platelets promote liver regeneration in early period after hepatectomy in mice. World J Surg 2007; 31: 808-816.
  • 19 Lang PA, Contaldo C, Georgiev P. et al. Aggravation of viral hepatitis by platelet-derived serotonin. Nat Med 2008; 14: 756-761.
  • 20 Blair P, Flaumenhaft R. Platelet α-granules: Basic biology and clinical correlates. Blood Rev 2009; 23: 177-189.
  • 21 Richardson JL, Shivdasani RA, Boers C. et al. Mechanisms of organelle transport and capture along proplatelets during platelet production. Blood 2005; 106: 4066-4075.
  • 22 Nesbitt WS, Westein E, Tovar-Lopez FJ. et al. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat Med 2009; 15: 665-673.
  • 23 Hourdillé P, Hasitz M, Belloc F. et al. Immunocytochemical study of the binding of fibrinogen and thrombospondin to ADP- and thrombin-stimulated human platelets. Blood 1985; 65: 912-920.
  • 24 Sehgal S, Storrie B. Evidence that differential packaging of the major platelet granule proteins von Willebrand factor and fibrinogen can support their differential release. J Thromb Haemost 2007; 5: 2009-2016.
  • 25 Italiano Jr JE, Richardson JL, Patel-Hett S. et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 2008; 111: 1227-1233.
  • 26 Ma L, Perini R, McKnight W. et al. Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets. Proc Natl Acad Sci USA 2005; 102: 216-220.
  • 27 Gleissner CA, von Hundelshausen P, Ley K. Platelet chemokines in vascular disease. Arterioscler Thromb Vasc Biol 2008; 28: 1920-1927.
  • 28 Kowalska MA, Rauova L, Poncz M. Role of the platelet chemokine platelet factor 4 (PF4) in hemostasis and thrombosis. Thromb Res 2010; 125: 292-296.
  • 29 Schober A, Manka D, von Hundelshausen P. et al. Deposition of platelet RANTES triggering monocyte recruitment requires P-selectin and is involved in neointimal formation after arterial injury. Circulation 2002; 106: 1523-1529.
  • 30 Breland UM, Michelson AE, Skjelland M. et al. Raised MCP-4 levels in asymptomatic carotid atherosclerosis: an inflammatory link between platelet and monocyte activation. Cardiovasc Res 2010; 86: 265-273.
  • 31 Denis MM, Tolley ND, Bunting M. et al. Escaping the nuclear confines: signal-dependent pre-RNA splicing in anucleate platelets. Cell 2005; 122: 379-391.
  • 32 von Hundelshausen P, Weber C. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res 2007; 100: 27-40.
  • 33 Wagner DD, Frenette PS. The vessel wall and its interactions. Blood 2008; 111: 5271-5281.
  • 34 von Hundelshausen P, Koenen RR, Weber C. Platelet-mediated enhancement of leukocyte adhesion. Microcirculation 2009; 16: 84-96.
  • 35 Langer HF, Daub K, Braun G. et al. Platelets recruit human dendritic cells via Mac-1/JAM-C interaction and modulate dendritic cell function in vitro. Arterioscler Thromb Vasc Biol 2007; 27: 1463-1470.
  • 36 Sudhof TC, Rothman JE. Membrane fusion: grappling with SNARE and SM proteins. Science 2009; 323: 474-477.
  • 37 Ren Q, Barber HK, Crawford GL. et al. Endobrevin/VAMP-8 is the primary v-SNARE for the platelet release reaction. Mol Biol Cell 2007; 18: 24-33.
  • 38 Lemmons PP, Chen D, Whiteheart SW. Molecular mechanisms of platelet exocytosis: requirements for α-granule release. Biochem Biophys Res Commun 2000; 267: 875-880.
  • 39 Tolmachova T, Abrink M, Futter CE. et al. Rab27b regulates number and secretion of dense granules. Proc Natl Acad Sci USA 2007; 104: 5872-5877.
  • 40 Schoenwaelder SM, Yuan Y, Josefsson EF. et al. Two distinct pathways regulate platelet phosphatidylserine exposure and procoagulant function. Blood 2009; 114: 663-666.
  • 41 Dean WL, Lee MJ, Cummins TD. et al. Proteomic and functional characterization of platelet microparticle size classes. Thromb Haemost 2009; 102: 711-718.
  • 42 Doeuvre L Plawinski L, Toti F. et al. Cell-derived microparticles: a new challenge in neuroscience. J Neurochem 2009; 110: 457-468.
  • 43 Janowska-Wieczorek A, Marquez-Curtis L, Wieczorek M. et al. Enhancing effect of platelet-derived microvesicles on the invasive potential of breast cancer cells. Transfusion 2005; 46: 1199-1209.
  • 44 Dashevsky O, Varon D, Brill A. Platelet-derived microparticles promote invasiveness of prostrate cancer cells with upregulation of MMP-2 production. Int J Cancer 2009; 14: 1773-1777.
  • 45 Horstman LL, Jy W, Ahn YS. et al. Role of platelets in neuroinflammation: a wide-angle perspective. J Neuroinflammation 2010; 7: 10.
  • 46 Denis MM, Tolley ND, Bunting M. et al. Escaping the nuclear confines: signal-dependent pre-RNA splicing in anucleate platelets. Cell 2005; 122: 379-391.
  • 47 Schwertz H, Tolley ND, Foulks JM. et al. Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenicity of human platelets. J Exp Med 2006; 203: 2433-2440.
  • 48 Yeaman MR. Platelets in defense against bacterial pathogens. Cell Mol Life Sci 2010; 67: 525-544.
  • 49 Beaulieu LM, Freedman JE. The role of inflammation in regulating platelet production and function: Toll-like receptors in platelets and megakaryocytes. Thromb Res 2010; 125: 205-209.
  • 50 Aslam R, Speck ER, Kim M. et al. Platelet toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-alpha production in vivo. Blood 2006; 107: 637-641.
  • 51 Ma AC, Kubes P. Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis. J Thromb Haemost 2008; 6: 415-420.
  • 52 Clark SR, Ma AC, Taverner SA. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature Med 2007; 13: 463-469.
  • 53 Bernard GR, Vincent JL, Laterre PF. et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 2001; 344: 699-709.
  • 54 Preston RJ, Tran S, Johnson JA. et al. Platelet factor 4 impairs the anticoagulant activity of activated protein C. J Biol Chem 2009; 284: 5869-5875.
  • 55 Blair P, Rex S, Vitseva O. et al. Stimulation of Toll-like receptor 2 in human platelets induces a thromboinflammatory response through activation of phosphoinositide 3-kinase. Circ Res 2009; 104: 346-354.
  • 56 Kälvegren H, Skoglund C, Helldahl C. et al. Toll-like receptor 2 stimulation of platelets is mediated by purinergic P2X1-dependent Ca2+ mobilization, cyclooxygenase and purinergic P2Y1 and P2Y12 receptor activation. Thromb Haemost 2010; 103: 398-407.
  • 57 Jimenez-Dalmaroni MJ, Xiao N, Corper AL. et al. Soluble CD36 ectodomain binds negatively charged diacylglycerol ligands and acts as a co-receptor for TLR2. PLoS One 2009; 4: e7411.
  • 58 Washington AV, Schubert RL, Quigley L. et al. A TREM family member, TLT-1 is found exclusively in the α-granules of megakaryocytes and platelets. Blood 2004; 104: 1042-1047.
  • 59 Washington AV, Gibot S, Acevedo I. et al. TREM-like transcript-1 protects against inflammation-associated hemorrhage by facilitating platelet aggregation in mice and humans. J Clin Invest 2009; 119: 1489-1501.
  • 60 Haselmayer P, Grosse-Hovest L, von Landenberg P. et al. TREM-1 ligand expression on platelets enhances neutrophil activation. Blood 2007; 110: 1029-1035.
  • 61 Flaujac C, Boukour S, Cramer-Bordé E. Platelets and viruses: an ambivalent relationship. Cell Mol Life Sci 2010; 67: 545-556.
  • 62 Chaipan C, Soilleux EJ, Simpson P. et al. DC-SIGN and CLEC-2 mediate human immunodeficiency virus type I capture by platelets. J Virol 2006; 80: 8951-8960.
  • 63 Gavrilovskaya IN, Gorbunova EE, Mackow ER. Pathogenic hantaviruses direct the adherence of quiescent platelets to infected endothelial cells. J Virol 2010; 84: 4832-4839.
  • 64 Bridges DJ, Bunn J, van Mourik JA. et al. Rapid activation of endothelial cells enables Plasmodium falciparum adhesion to platelet-decorated von Willebrand factor strings. Blood 2010; 115: 1472-1474.
  • 65 McMorran BJ, Marshall VM, de Graafe C. et al. Platelets kill intra-erthyrocytic malarial parasites and mediate survival to infection. Science 2009; 323: 797-800.
  • 66 Krijgsveld J, Zaat SA, Meeldijk J. et al. Thrombocidins, microbicidal proteins from human blood platelets are C-terminal deletion products of CXC chemokines. J Biol Chem 2000; 275: 20374-20381.
  • 67 Iannacone M, Sitia G, Isogawa M. et al. Platelets prevent IFN-alpha/beta-induced lethal hemorrhage promoting CTL-dependent clearance of lymphocytic choriomeningitis virus. Proc Natl Acad Sci USA 2008; 105: 629-634.
  • 68 Redland EK, Ueland T, Pedersen TM. et al. Activation of platelets by Aspergillus fumigatus and potential role of platelets in the immunopathogenesis of Aspergillosis. Infect Immun 2010; 78: 1269-1275.
  • 69 Peerschke E, Yin AW, Ghebrehlwet B. Complement activation on platelets: implications for vascular inflammation and thrombosis. Mol Immunol 2010; 47: 2170-2175.
  • 70 Del Conde I, Cruz MA, Zhang H. et al. Platelet activation leads to activation and propagation of the complement system. J Exp Med 2005; 201: 871-879.
  • 71 Licht C, Pluthero FG, Li L. et al. Platelet-associated complement factor H in healthy persons and patients with atypical HUS. Blood 2009; 114: 4538-4545.
  • 72 Hara T, Shimizu K, Ogawa F. et al. Platelets control leukocyte recruitment in a murine model of cutaneous arthus reaction. Am J Pathol 2010; 176: 259-269.
  • 73 Niemann S, Kehrel BE, Heilmann C. et al. Pneumococcal association to platelets is mediated by soluble fibrin and supported by thrombospondin-1. Thromb Haemost 2009; 102: 735-742.
  • 74 De Haas CJ, Weeterings C, Vughs MM. et al. Staphylococcal superantigen-like 5 activates platelets and supports platelet adhesion under flow conditions, which involves glycoprotein Ibα and αIIbβ3. J Thromb Haemost 2009; 7: 1867-1874.
  • 75 Miajlovic H, Zapotoczna M, Geoghegan JA. et al. Direct interaction of iron-regulated surface determinant IsdB of Staphylococcus aureas with the GPIIb-IIIa reecptor on platelets. Microbiology 2010; 156: 920-928.
  • 76 Sprague DL, Sowa JM, Elzey BD. et al. The role of platelet CD154 in the modulation of adaptive immunity. Immunol Res 2007; 39: 185-193.
  • 77 Solanilla A, Pasquet JM, Viallard JF. et al. Platelet-associated CD154 in immune thrombocytopenic purpura. Blood 2005; 105: 215-218.
  • 78 Elzey BD, Schmidt NW, Crist MA. et al. Platelet-derived CD154 enables T-cell priming and protection against Listeria monocytogenes challenge. Blood 2008; 111: 3684-3691.
  • 79 Sprague DL, Elzey BD, Crist SA. et al. Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood 2008; 110: 5028-5036.
  • 80 Urquizu-Pasilla M, Balada E, Cortès F. et al. Serum levels of soluble CD40 ligand at flare and at remission in patients with systemic lupus erythrematosus. J Rheumatol 2009; 36: 953-960.
  • 81 Esmon CT. Crosstalk between inflammation and thrombosis. Maturitas 2008; 61: 122-131.
  • 82 Levi M, Ten Cate H. Disseminated intravascular coagulation. N Engl J Med 1999; 341: 586-592.
  • 83 Goerge T, Ho-Tin-Noe B, Carbo C. et al. Inflammation induces hemorrhage in thrombocytopenia. Blood 2008; 111: 4958-4964.
  • 84 Campbell RA, Overmyer KA, Selzman CH. et al. Contributions of extravascular and intravascular cells to fibrin network formation, structure, and stability. Blood 2009; 114: 4886-4896.
  • 85 Zhao BQ, Chauhan AK, Canault M. et al. Von Willebrand factor-cleaving pro-tease ADAMST13 reduces ischemic brain injury in experimental stroke. Blood 2009; 114: 3329-3334.
  • 86 Beutler B. Toll-like receptors: how they work and what they do. Curr Opin Hematol 2002; 9: 2-10.
  • 87 Hu J, Van den Steen PE, Sang Q-XA. et al. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nature 2007; 6: 480-498.
  • 88 Niessen F, Schaffner F, Furlan-Fregula C. et al. Dendritic cell PAR1-SIP3 signalling couples coagulation and inflammation. Nature 2008; 452: 654-658.
  • 89 Eisenhardt SU, Habersberger J, Murphy A. et al. Dissociation of pentameric to monomeric C-reactive protein on activated platelets localizes inflammation to atherosclerotic plaques. Circ Res 2009; 105: 128-137.
  • 90 Libby P, Aikawa M. Stabilization of atherosclerotic plaques: new mechanisms and clinical targets. Nat Med 2002; 8: 1257-1262.
  • 91 May AE, Seizer P, Gawaz M. Platelets: Inflammatory firebugs of vascular walls. Arterioscler Thromb Vasc Biol 2008; 28: 5-10.
  • 92 Podrez EA, Byzova TV, Febbralo M. et al. Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype. Nat Med 2007; 13: 1086-1095.
  • 93 Ma Y, Ashraf MZ, Podrez EA. Scavenger receptor BI modulates platelet reactivity and thrombosis in dyslipidemia. Blood 2010; 116: 1932-1941.
  • 94 Gunarsson P, Levander L, Pählsson P. et al. Alpha(1)-acid glycoprotein (AGP)-induced platelet shape change involves the Rho/Rho kinase signalling pathway. Thromb Haemost 2009; 102: 694-703.
  • 95 O’Connor R, Cryan LM, Wynne K. et al. Proteomics strategy for identifying candidate bioactive proteins in complex mixtures: Application to the platelet releasate. J Biomed Biotechnol 2010; 2010: 107859.
  • 96 Vandendries ER, Furie BC, Furie B. Role of P-selectin and PSGL-1 in coagulation and thrombosis. Thromb Haemost 2004; 92: 459-466.
  • 97 McEver RP. Rolling back to neutrophil adhesion. Nat Immunol 2010; 11: 282-284.
  • 98 Dong ZM, Brown AA, Wagner DD. Prominent role of P-selectin in the development of advanced atherosclerosis in ApoE-deficient mice. Circulation 2000; 101: 2290-2295.
  • 99 Ridker P, Buring JE, Rifai N. Soluble P-selectin and the risk of future cardiovascular events. Circulation 2001; 103: 491-495.
  • 100 Kisucka J, Chauhan AK, Zhao AK. et al. Elevated levels of soluble P-selectin in mice alter blood-brain barrier function, exacerbate stroke, and promote atherosclerosis. Blood 2009; 113: 6015-6022.
  • 101 André P, Hartwell D, Hrachoinova I. et al. Pro-coagulant state resulting from high levels of soluble P-selectin in blood. Proc Natl Acad Sci USA 2000; 97: 13835-13840.
  • 102 Woollard KJ, King D, Kulkarni S. et al. Raised plasma soluble P-selectin in peripheral arterial occlusive disease enhances leukocyte adhesion. Circ Res 2006; 98: 149-158.
  • 103 Davi G, Romano M, Mazzetti A. et al. Increased levels of soluble P-selectin in hypercholesterolemic patients. Circulation 1998; 97: 953-957.
  • 104 Hassan GS, Merhi Y, Mourad WM. CD154 and its receptors in inflammatory vascular pathologies. Trends Immunol 2009; 30: 165-172.
  • 105 Viallard JF, Solanilla A, Gauthier N. et al. Increased soluble and platelet-associated CD40 ligand in essential thrombocythemia and reactive thrombocytosis. Blood 2002; 99: 2612-2614.
  • 106 Crist SA, Sprague DL, Ratliff TL. Nuclear factor of activated T cells (NFAT) mediates CD154 expression in megakaryocytes. Blood 2008; 111: 3553-3561.
  • 107 Choi WS, Jeon OH, Kim DS. CD40 ligand shedding is regulated by interaction between matrix metalloproteinase-2 and platelet integrin αIIbβ3. J Thromb Haemost 2010; 8: 1364-1371.
  • 108 Antoniades C, Bakogiannis C, Tousoulis D. et al. The CD40/CD40L system: Linking inflammation with atherothrombosis. J Am Coll Cardiol 2009; 54: 669-677.
  • 109 Levi M, van der Poll T, Buller HR. Bidirectional relation between inflammation and coagulation. Circulation 2004; 109: 2698-2704.
  • 110 Pluvinet R, Oliver R, Krupinski J. et al. CD40: an upstream master switch for endothelial cell activation uncovered by RNAi-coupled transcriptional profiling. Blood 2008; 112: 3624-3637.
  • 111 André P, Prasad KC, Denis CV. et al. CD40L stabilizes arterial thrombi by a β3 integrin-dependent mechanism. Nat Med 2002; 8: 247-252.
  • 112 Prasad KS, André P, He M. et al. Soluble CD40L induces β3 integrin tyrosine phosphorylation and triggers platelet activation by outside-in signaling. Proc Natl Acad Sci USA 2003; 100: 12367-12371.
  • 113 May AE, Kalsch T, Massberg S. et al. Engagement of glycoprotein IIb/IIIa (αIIbβ3) on platelets upregulates CD40L and triggers CD40L-dependent matrix degradation by endothelial cells. Circulation 2002; 106: 2111-2117.
  • 114 Chen C, Chai H, Wang X. et al. Soluble CD40 ligand induces endothelial dysfunction in human and porcine coronary artery endothelial cells. Blood 2008; 112: 3205-3216.
  • 115 Chai H, Aghaie K, Zhou W. Soluble CD40 ligand induces human coronary artery smooth muscle cells proliferation and migration. Surgery 2009; 146: 5-11.
  • 116 Donners MM, Beckers L, Lievens D. et al. The CD40-TRAF6 axis is the key regulator of the CD40/CD40L system in neointima formation and arterial remodeling. Blood 2008; 111: 4596-4604.
  • 117 Li G, Sanders JM, Bevard MH. et al. CD40 ligand promotes Mac-1 expression, leukocyte recruitment, and neointima formation after vascular injury. Am J Pathol 2008; 172: 1141-1152.
  • 118 Zirlak A, Maier C, Gerdes N. et al. CD40 ligand mediates inflammation independently of CD40 by interaction with Mac-1. Circulation 2007; 115: 1571-1580.
  • 119 Léveillé C, Bouillon M, Guo W. et al. CD40 ligand binds to α5β1 and triggers cell signaling. J Biol Chem 2007; 282: 5143-5151.
  • 120 Ferro D, Loffredo L, Polimeni L. et al. Soluble CD40 ligand predicts ischemic stroke and myocardial infarction in patients with nonvalvular atrial fibrillation. Arterioscler Thromb Vasc Biol 2007; 27: 2763-2768.
  • 121 Kageyama K, Nakajima Y, Shibasaki M. et al. Increased platelet, leukocyte, and endothelial cell activity are associated with increased coagulability in patients after total hip arthroplasty. J Thromb Haemost 2007; 5: 738-745.
  • 122 Khan SY, Kelher MR, Heal JM. et al. Soluble CD40 ligand accumulates in stored blood components, primes neutrophils through CD40, and is a potential cofactor in the development of transfusion-related acute lung injury. Blood 2006; 108: 2455-2462.
  • 123 Chauhan AK, Kisucka J, Brill A. et al. ADAMTS13: a new link between thrombosis and inflammation. J Exp Med 2008; 205: 2065-2074.
  • 124 George JN. Clinical practice. Thrombotic thrombocytopenic purpura. New Engl J Med 2006; 354: 1927-1935.
  • 125 Bernard JJ, Seweryniak KE, Koniski AD. et al. Foxp3 regulates megakaryopoiesis and platelet function. Arteriscler Thromb Vasc Biol 2009; 29: 1874-1882.
  • 126 Wildin RS, Smyk-Pearson S, Filipovich AH. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. J Med Genet 2002; 39: 537-545.
  • 127 Lambert MP, Rauova L, Bailey M. et al. Platelet factor 4 is a negative autocrine in vivo regulator of megakaryopoiesis: clinical and therapeutic implications. Blood 2007; 110: 1153-1160.
  • 128 Natal C, Restituto P, Inigo C. et al. The proinflammatory mediator CD40 ligand is increased in the metabolic syndrome and modulated by adiponectin. J Clin Endocrionol Metab 2008; 93: 2319-2327.
  • 129 Unek IT, Bayraktar F, Solmaz D. et al. Enhanced levels of soluble CD40 ligand and C-reactive protein in a total of 312 patients with metabolic syndrome. Metabolism 2010; 59: 305-313.
  • 130 Lopez-Vilchez I, Escolar G, Diaz-Ricart M. et al. Tisssue factor-enriched vesicles are taken up by platelets and induce platelet aggregation in the presence of factor VIIa. Thromb Haemost 2007; 97: 202-211.
  • 131 Dale GL. Coated platelets: an emerging component of the procoagulant response. J Thromb Haemost 2005; 3: 2185-2192.
  • 132 Busso N, Chobaz-Péclat V, Hamilton J. et al. Essential role of platelet activation via protease activated receptor 4 in tissue factor-mediated inflammation. Arthritis Res Ther 2008; 10: R42.
  • 133 Lay AJ, Donahue D, Tsai MJ. et al. Acute inflammation is exacerbated in mice genetically predisposed to a severe protein C deficiency. Blood 2007; 109: 1984-1991.
  • 134 Lindmark E, Tenno T, Siegbahn A. Role of platelet P-selectin and CD40L in the induction of monocyte tissue factor expression. Arterioscler Thromb Vasc Biol 2000; 20: 2322-2328.
  • 135 Del Conde I, Shrimpton CN, Thiagarajan P. et al. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood 2005; 106: 1604-1611.
  • 136 Taylor FBJ, Chang A, Ruf W. et al. Lethal E coli septic shock shock is prevented by blocking tissue factor with monoclonal antibody. Circ Shock 1991; 33: 127-134.
  • 137 Moons AH, Levi M, Peters RJ. Tissue factor and coronary artery disease. Cardiovasc Res 2002; 53: 313-325.
  • 138 Maroney SA, Haberichter SL, Friese P. et al. Active tissue factor pathway inhibitor is expressed on the surface of coated platelets. Blood 2007; 109: 1931-1937.
  • 139 Parks WC, Wilson CL, Lopez-Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 2004; 4: 617-629.
  • 140 Levesque J-P, Liu F, Simmons PJ. et al. Characterization of hematopoietic progenitor mobilization in protease-deficient mice. Blood 2004; 104: 65-72.
  • 141 Hu J, Van den Steen PE, Sang Q-XA. et al. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nature 2007; 6: 480-498.
  • 142 Fernandez-Patron C, Martinez-Cuesta MA, Salas E. et al. Differential regulation of platelet aggregation by matrix metalloproteinases-9 and -2. Throm Haemost 1999; 82: 1730-1735.
  • 143 Kazes I, Elalamy I, Sraer J-D. et al. Platelet release of trimolecular complex components MTI-MMP/TIMP2/MMP2: involvement in MMP2 activation and platelet aggregation. Blood 2000; 96: 3064-3069.
  • 144 Johnson C, Galis ZS. Matrix metalloproteinase-2 and -9 differentially regulate smooth muscle cell migration and cell mediated collagen organization. Arterioscler Thromb Vasc Biol 2004; 24: 54-60.
  • 145 Sawicki G, Sanders EJ, Salas E. et al. Localization and translocation of MMP-2 during aggregation of human platelets. Thromb Haemost 1998; 80: 836-839.
  • 146 Trivedi V, Boire A, Tchernychev B. et al. Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site. Cell 2009; 137: 332-343.
  • 147 Bergmeier W, Piffath CL, Cheng G. et al. Tumour necrosis factor-alpha-converting enzyme (ADAM17) mediates GPIbalpha shedding from platelets in vitro and in vivo. Circ Res 2004; 95: 677-683.
  • 148 Bender M, Hoffmann S, Stegner D. et al. Differentially regulated GPVI ectodo-main shedding by multiple platelet-expresed proteins. Blood 2010; 116: 3347-3355.
  • 149 Brill A, Chauhan AK, Canault M. et al. Oxidative stress activates ADAM17/TACE and induces its target receptor shedding in platelets in a p38-dependent fashion. Cardiovasc Res 2009; 84: 137-144.
  • 150 Neth P, Ciccarella M, Egea V. et al. Wnt signalling regulates the invasion capacity of human mesenchymal stem cells. Stem Cells 2006; 24: 1892-1903.
  • 151 Steele BM, Harper MT, Macaulay IC. et al. Canonical Wnt signalling negatively regulates platelet function. Proc Natl Acad Sci USA 2009; 106: 19836-19841.
  • 152 Murate T, Yamashita K, Isogai C. et al. The production of tissue inhibitors of metalloproteinases (TIMPs) in megakaryopoiesis: possible role of platelet- and megakaryocyte-derived TIMPs in bone marrow fibrosis. Br J Haematol 1997; 99: 181-189.
  • 153 Radomski A, Jurasz P, Sanders EJ. et al. Identification, regulation and role of tissue inhibitor of metalloproteinases-4 (TIMP-4) in human platelets. Br J Pharmacol 2002; 137: 1330-1338.
  • 154 Chirco R, Liu XW, Jung KK. et al. Novel functions of TIMPs in cell signaling. Cancer Metastasis Rev 2006; 25: 99-113.
  • 155 Villeneuve J, Block A, Le Bousse M-C. et al. Tissue inhibitors of matrix metalloproteases in platelets and megakaryocytes: A novel organization for these secreted proteins. Exp Hematol 2009; 37: 849-856.
  • 156 Aso Y. Plasminogen activator inhibitor (PAI)-1 in vascular inflammation and thrombosis. Front Biosci 2007; 12: 2957-2966.
  • 157 Lijnen HR. Pleiotropic functions of plasminogen inhibitor-1. J Thromb Haemost 2005; 3: 35-44.
  • 158 Boulaftali Y, Adam F, Venise L. et al. Anticoagulant and antithrombotic properties of platelet protease nexin-1. Blood 2010; 115: 97-106.
  • 159 Smith HW, Marshall CJ. Regulation of cell signaling by uPAR. Nat Rev Mol Cell Biol. 2010; 11: 23-38.
  • 160 Garg N, Goyal N, Strawn TL. et al. Plasminogen activator inhibitor-1 and vitronectin expression level and stoichiometry regulate vascular smooth muscle cell migration through physiological collagen matrices. J Thromb Haemost 2010; 8: 1847-1854.
  • 161 Eitzman DT, Westrick RJ, Xu Z. et al. Plasminogen activator inhibitor-1 deficiency protects against atherosclerosis progression in the mouse carotid artery. Blood 2000; 96: 4212-4215.
  • 162 Dejouvencel T, Doeuvre L, Lacroix R. et al. Fibrinolytic cross-talk: a new mechanism for plasmin. Blood 2010; 115: 2048-2056.
  • 163 Carmeliet P. Angiogenesis in health and disease. Nat Med 2003; 9: 653-660.
  • 164 Folkman J, Browder T, Palmblad J. Angiogenesis research: guidelines for translation to clinical application. Thromb Haemost 2001; 86: 23-33.
  • 165 Deregibus MC, Buttiglieri S, Russo S. et al. CD-40-dependent activation of phosphatidylinositol 3-kinase/Akt pathway mediates endothelial cell survival and in vitro angiogenesis. J Biol Chem 2003; 278: 1808-1814.
  • 166 Fang L, Yan Y, Komuves LG. et al. PDGF C is a selective alpha-platelet-derived receptor agonist that is highly expressed in platelet α-granules and vascular smooth muscle. Arterioscler Thromb Vasc Biol 2004; 24: 787-792.
  • 167 Li L, Asteriou T, Bernert B. et al. Growth factor regulation of hyaluronan synthesis and degradation in human dermal fibroblasts: importance of hyaluronan for the mitogenic response of PDGF-BB. Biochem J 2007; 404: 327-336.
  • 168 Brill A, Elinav H, Varon D. Differential role of platelet granular mediators in angiogenesis. Cardiovasc Res 2004; 63: 226-235.
  • 169 Walshe TE, Dole VS, Maharaj AS. et al. Inhibition of VEGF or TGF-β signaling activates endothelium and increases leukocyte rolling. Arterioscler Thromb Vasc Biol 2009; 29: 1185-1192.
  • 170 Min J-K, Lee LH, Kim Y-M. et al. Hepatocyte growth factor suppresses vascular endothelial growth factor-induced expression of endothelial ICAM-1 and VCAM-1 by inhibiting the nuclear factor kappaB pathway. Circ Res 2005; 96: 300-307.
  • 171 Brunner G, Blakytny R. Extracellular regulation of TGF-beta activity in wound repair: growth factor latency as a sensor mechanism to injury. Thromb Haemost 2004; 92: 253-261.
  • 172 Ahamed J, Janczak CA, Wittkowski KM. et al. In vitro and In vivo evidence that thrombospondin-1 (TSP-1) contributes to stirring- and shear-dependent activation of platelet-derived TGF-β1. PLoS One 2009; 4: e6608.
  • 173 Tran DQ, Andersson J, Wang R. et al. GARP (LRRC32) is essential for the surface expression of latent TGF-β on platelets and activated FOXP3+ regulatory T cells. Proc Natl Acad Sci USA 2009; 106: 294-299.
  • 174 Jimenez B, Volpert OV, Crawford SE. et al. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 2000; 6: 41-48.
  • 175 Isenberg JS, Calzada MJ, Zhou L. et al. Endogenous thrombospondin-1 is not necessary for proliferation but is permissive for vascular smooth muscle cell responses to platelet-derived growth factor. Matrix Biol 2005; 24: 110-123.
  • 176 Bikfalvi A. Recent developments in the inhibition of angiogenesis: examples from studies on platelet factor 4 and the VEGF-VEGFR system. Biochem Pharmacol 2004; 68: 1017-1021.
  • 177 Folkman J. Antiangiogenesis in cancer therapy – endostatin and its mechanism of action. Exp Cell Res 2006; 312: 594-607.
  • 178 Bambace NM, Levis JE, Holmes CE. The effect of P2Y-mediated platelet activation on the release of VEGF and endostatin from platelets. Platelets 2010; 21: 85-93.
  • 179 Cicha I, Garlichs CD, Daniel WG. et al. Activated human platelets release connective tissue growth factor. Thromb Haemostasis 2004; 91: 755-760.
  • 180 Thulin A, Ringvall A, Dimberg A. et al. Activated platelets provide a functional microenvironment for the antiangiogenic fragment of histidine-rich glycoprotein. Mol Cancer Res 2009; 7: 1792-1802.
  • 181 Kitaura H, Zhou P, Ross FP. et al. IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest 2005; 115: 282-290.
  • 182 Choi SJ, Cruz JC, Craig F. et al. Macrophage inflammatory protein 1-alpha is a potential osteoclast stimulatory factory in multiple myeloma. Blood 2000; 96: 671-675.
  • 183 Klinger MH, Wilhelm D, Bubel S. et al. Immunocytochemical localization of the chemokines RANTES and MIP-1α within human platelets and their release during storage. Int Arch Allergy Immunol 1995; 107: 541-546.
  • 184 Sipe JB, Zhang J, Waits C. et al. Localization of bone morphogenetic proteins (BMPs)-2, -4, and -6 within megakaryocytes and platelets. Bone 2004; 35: 1316-1322.
  • 185 Taylor VL, Spencer EM. Characterization of insulin-like growth factor-binding protein-3 to a novel receptor on human platelet membranes. J Endocrinol 2001; 168: 307-313.
  • 186 Fujiwara H. Do circulating blood cells contribute to maternal tissue remodeling and embryo-maternal cross-talk around the implantation period?. Mol Hum Re-prod 2009; 15: 335-343.
  • 187 Echtler K, Stark K, Lorenz M. et al. Platelets contribute to postnatal occlusion of the ductus arteriosus. Nature Med 2010; 16: 75-82.
  • 188 Carramolino L, Fuentes J, Garcia-Andrés C. et al. Platelets play an essential role in separating the blood and lymphatic vasculatures during embryonic angiogenesis. Circ Res 2010; 106: 1197-1201.
  • 189 Uhrin P, Zaujec J, Breuss JM. et al. Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation. Blood 2010; 115: 3997-4005.
  • 190 Bertozzi CC, Schmaier AA, Mericko P. et al. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood 2010; 116: 661-670.
  • 191 Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nature Rev Immunol 2006; 6: 508-519.
  • 192 Cho A, Reidy MA. Matrix metalloproteinase-9 is necessary for the regulation of smooth muscle cell replication and migration after arterial injury in mice. Circ Res 2002; 91: 845-851.
  • 193 Luttun A, Lutgens E, Manderveld A. et al. Loss of matrix metalloproteinase-9 or matrix metalloproteinase-12 protects apolipoprotein E-deficient mice against atherosclerotic media destruction but differentially affects plaque growth. Circulation 2004; 109: 1408-1414.
  • 194 Heymans S, Luttun A, Nuyens D. et al. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nature Med 1999; 5: 1135-1142.
  • 195 Dole VS, Matuska J, Vasile E. et al. Thrombocytopenia and platelet abnormalities in high-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 2008; 28: 1111-1116.
  • 196 Shattil SJ, Anaya-Galindo R, Bennett J. et al. Platelet hypersensitivity induced by cholesterol incorporation. J Clin Invest 1975; 55: 636-643.
  • 197 Smyth SS, Reis ED, Zhang W. et al. β3-integrin-deficient mice but not P-selectin-deficient mice develop intimal hyperplasia after vascular injury. Correlation with leukocyte recruitment to adherent platelets 1 hour after injury. Circulation, 2001; 103: 2501-2507.
  • 198 Evalangista V, Pamuklar Z, Piccoli A. et al. Src family kinases mediate neutrophil adhesion to adherent platelets. Blood 2007; 109: 2461-2469.
  • 199 Massberg S, Schürzinger K, Lorenz M. et al. Platelet adhesion via glycoprotein IIb integrin is critical for atheroprogression and focal cerebral ischemia: an in vivo study in mice lacking glycoprotein IIb. Circulation 2005; 112: 1180-1188.
  • 200 Huo Y, Schober A, Forlow SB. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 2003; 9: 61-67.
  • 201 Oki T, Eto K, Izawa K. et al. Evidence that integrin αIIbβ3-dependent interaction of mast cells with fibrinogen exacerbates chronic inflammation. J Biol Chem 2009; 284: 3143-3172.
  • 202 Stoll G, Kleinschnitz C, Nieswandt B. Molecular mechanisms of thrombus formation in ischaemic stroke: novel insights and targets for treatment. Blood 2008; 112: 3555-3562.
  • 203 Jackson SP, Schoenwaelder SM. Antiplatelet therapy: in search of the ‘magic bullet‘. Nature Reviews DrugDiscovery 2003; 2: 775-789.
  • 204 Opdenakker G, Nelissen I, van Damme J. Functional roles and therapeutic targeting of gelatinase B and chemokines in multiple sclerosis. Lancet Neurol 2003; 2: 747-756.
  • 205 Yong VW, Zabad RK, Agrawal S. et al. Elevation of matrix metalloproteinases (MMPs) in multiple sclerosis and impact of immunomodulation. J Neurol Sci 2007; 259: 79-84.
  • 206 Querfurth HW, LaFerla FM. Alzheimer‘s disease. New Engl J Med 2010; 362: 329-344.
  • 207 Skovronsky DM, Lee M-Y, Pratico D. Amyloid precursor protein and amyloid β peptide in human platelets. Role of cyclooxygenase and protein kinase C. J Biol Chem 2001; 276: 17036-17043.
  • 208 Evin G, Holsiinger RM, Masters CL. et al. Proteolytic processing of the Alzheimer‘s disease amyloid precursor protein in brain and platelets. J Neurosci Res 2003; 74: 386-392.
  • 209 Paul J, Strickland S, Melchior JP. Fibrin deposition accelerates neurovascular damage and neuroinflammation in mouse models of Alzheimers disease. J Exp Med 2007; 204: 1999-2008.
  • 210 Klotz L, Diehl L, Dani J. et al. Brain endothelial PPAR gamma controls inflammation induced CD4+ T cell adhesion and transmigration in vitro. J Neuroimmunol 2007; 190: 34-43.
  • 211 Currie J, Ramsbottom R, Ludlow H. et al. Cardio-respiratory fitness, habitual physical activity and serum brain derived neutrotrophic factor (BDNF) in men and women. Neurosci Letts 2009; 451: 152-155.
  • 212 Fujimura H, Altar CA, Chen R. et al. Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thromb Haemost 2002; 87: 728-734.
  • 213 Wiesner T, Bugl S, Mayer F. et al. Differential changes in platelet VEGF, TSP, CXCL12 and CXCL4 in patients with metastatic cancer. Clin Exp Metastasis 2010; 27: 141-149.
  • 214 Erpenbeck L, Schön MP. Deadly allies: the fatal interplay between platelets and metastasizing cancer cells. Blood 2010; 115: 3427-3436.
  • 215 Falanga A, Panova-Noeva M, Russo L. Procoagulant mechanisms in tumour cells. Best Pract Res Clin Haematol 2009; 22: 49-60.
  • 216 Kopp HG, Placke T, Salih HR. Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumour activity. Cancer Res 2009; 69: 7775-7783.
  • 217 Kim YJ, Borsig L, Varki NM. et al. P-selectin deficiency attenuates tumour growth and metastasis. Proc Natl Acad Sci USA 1998; 95: 9325-9330.
  • 218 Robinson SD, Reynolds LE, Wyder L. et al. Beta3-integrin regulates vascular endothelial growth factor-A-dependent permeability. Arterioscler Thromb Vasc Biol 2004; 24: 2108-2114.
  • 219 Jain S, Zuka M, Liu J. et al. Platelet glycoprotein Ibalpha supports experimental lung metastasis. Proc Natl Acad Sci USA 2007; 104: 9024-9028.
  • 220 Jain S, Russell S, Ware J. Platelet glycoprotein VI facilitates experimental lung metastasis in syngenic mouse models. J Thromb Haemost 2009; 10: 1713-1717.
  • 221 Boucharaba A, Serre GM, Guglielmi J. et al. The type I lysophosphatidic acid receptor is a target for therapy in bone metastases. Proc Natl Acad Sci USA 2006; 103: 9643-9648.
  • 222 Janowska-Wieczorek A, Wysoczynski M, Kijowski J. et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 2005; 20: 752-760.
  • 223 Browder T, Folkman J, Pirie-Shepherd S. The hemostatic system as a regulator of angiogenesis. J Biol Chem 2000; 275: 1521-1524.
  • 224 Klement GL, Yip TT, Cassiola F. et al. Platelets actively sequester angiogenesis regulators. Blood 2009; 113: 2835-2842.
  • 225 Kerr BA, Miocinovic R, Smith AK. et al. Comparison of tumor and micro-environment secretomes in plasma and platelets during prostrate cancer growth in a xenograft model. Neoplasia 2010; 12: 388-396.
  • 226 Cervi D, Yip TT, Bhattacharya N. et al. Platelet-associated PF-4 as a biomarker of early tumour growth. Blood 2008; 111: 1201-1207.
  • 227 Zaslavsky A, Baek KH, Lynch RC. et al. Platelet-derived thrombospondin-1 (TSP-1) is a critical negative regulator and potential biomarker of angiogenesis. Blood 2010; 115: 4605-4613.
  • 228 Peterson JE, Zurakowski D, Italiano JE. Jr, et al. Normal ranges of angiogenesis regulatory proteins in human platelets. Am J Hematol 2010; 8: 487-493.
  • 229 Suzuki-Inoue K, Kato Y, Inoue O. et al. Involvement of the snake toxin receptor CLEC-2 in podoplanin-mediated platelet activation by cancer cells. J Biol Chem 2007; 282: 25993-26001.
  • 230 Katoh N. Platelets as versatile regulators of cutaneous inflammation. J Dermatol Sci 2009; 53: 89-95.
  • 231 O’Sullivan BP, Michelson AD. The inflammatory role of platelets in cystic fibrosis. Am J Respir Crit Care Med. 2006; 173: 483-490.
  • 232 Garbaraviciene J, Diehl S, Varwig D. et al. Platelet P-selectin reflects a state of cutaneous inflammation: possible application to monitor treatment efficacy in psoriasis. Exp Dermatol 2010; 19: 736-741.
  • 233 Wu B, Liu G, Yube K. et al. Effects of platelet release products on neutrophilic activity in human whole blood. Inflamm Res 2009; 58: 321-328.
  • 234 Smyth SS, McEver RP, Weyrich AS. et al. Platelet functions beyond hemostasis. J Thromb Haemost 2009; 7: 1759-1766.
  • 235 Vlaar AP, Hofstra JJ, Kulik W. et al. Supernatant of stored platelets causes lung inflammation and coagulopathy in a novel in vivo transfusion model. Blood 2010; 116: 1360-1368.
  • 236 Antczak AJ, Singh N, Gay SR. et al. IgG-complex stimulated platelets: a source of sCD40L and RANTES in initiation of inflammatory cascade. Cell Immunol 2010; 263: 129-133.
  • 237 Selman M, Cisneros-Lira J, Gaxiola M. et al. Matrix metalloproteinases inhibition attenuates tobacco smoke-induced emphysema in guinea pigs. Chest 2003; 123: 1633-1641.
  • 238 Cory DB, Kiss A, Song LZ. et al. Overlapping and independent contributions of MMP2 and MMP9 to lung allergic inflammatory cell egression through decreased CC chemokines. FASEB J 2004; 18: 995-997.
  • 239 Asaduzzaman M, Lavasani S, Rahman M. et al. Platelets support pulmonary recruitment of neutrophils in abdominal sepsis. Crit Care Med 2009; 37: 1389-1396.
  • 240 Menchen L, Marin-Jiminez I, Arias-Salgado EG. et al. Matrix metalloprotease 9 is involved in Crohn‘s disease-associated platelet hyperactivation through the release of soluble CD40L. Gut 2009; 58: 920-928.
  • 241 Schenk M, Bouchon A, Seibold F. et al. TREM-1-expressing intestinal macrophages crucially amplify chronic inflammation in experimental colitis and inflammatory bowel diseases. J Clin Invest 2007; 117: 3097-3106.
  • 242 Tchetverikov I, Lohmander LS, Verzijl N. et al. MMP protein and activity levels in synovial fluid from patients with joint injury, inflammatory arthritis, and osteoarthritis. Ann Rheum Dis 2005; 64: 694-698.
  • 243 Tchetverikov I, Lard LR, De Groot J. et al. Matrix metalloproteinases-3, –8, –9 as markers of disease activity and joint damage progression in early rheumatoid arthritis. Ann Rheum Dis 2003; 62: 1094-1099.
  • 244 Boilard E, Nigrovic PA, Larabee K. et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 2010; 327: 580-583.
  • 245 Lisman T, Porte RJ. Rebalanced hemostasis in patients with liver disease: evidence and clinical consequences. Blood 2010; 116: 878-885.
  • 246 Laschke MW, Dold S, Mener MD. et al. Platelet-dependent accumulation of leukocytes in sinusoids mediates hepatocellular damage in bile-duct ligation-induced cholestasis. Br J Pharmacol 2008; 153: 148-156.
  • 247 Zaldivar MM, Pauels K, von Hundelshausen P. et al. CXC chemokine ligand 4 (Cxcl14) is a platelet-derived mediator of experimental liver fibrosis. Hepatology 2010; 51: 1345-1353.
  • 248 Villeneuve J, Lepreux S, Mulot A. et al. A protective role for CD154 in hepatic steatosis. Hepatology 2011; 52: 1968-1979.
  • 249 Yamakuchi M, Kirkilesz-Smith NC, Ferlito M. et al. Antibody to human leukocyte antigen triggers endothelial exocytosis. Proc Natl Acad Sci USA 2007; 104: 1301-1306.
  • 250 Morrell CN, Murata K, Swaim AM. et al. In vitro platelet-endothelial cell interactions in response to major histocompatibility complex alloantibody. Circ Res 2008; 102: 777-785.
  • 251 Sanchez M, Anitua E, Orive G. et al. Platelet-rich therapies in the treatment of orthopaedic sport injuries. Sports Med 2009; 39: 345-354.
  • 252 Hwang YJ, Choi JY. Addition of mesenchymal stem cells to the scaffold of platelet-rich plasma is beneficial for the reduction of the consolidation period in mandibular distraction osteogenesis. J Oral Maxillofac Surg 2010; 68: 1112-1124.
  • 253 Maynard DM, Heijnen HF, Gahl WA. et al. The alpha granule proteome: novel proteins in normal and ghost granules in gray platelet syndrome. J Thromb Haemost 2010; 8: 1786-1796.