Thromb Haemost 2018; 118(01): 006-027
DOI: 10.1160/TH17-09-0630
Review Article
Schattauer GmbH Stuttgart

The Pathophysiological Role of Neutrophil Extracellular Traps in Inflammatory Diseases

Aldo Bonaventura*
,
Luca Liberale*
,
Federico Carbone
,
Alessandra Vecchié
,
Candela Diaz-Cañestro
,
Giovanni G. Camici
,
Fabrizio Montecucco
,
Franco Dallegri
Further Information

Publication History

13 September 2017

22 October 2017

Publication Date:
05 January 2018 (online)

Abstract

Neutrophil pathogen-killing mechanism termed neutrophil extracellular traps (NETs) has been recently identified. NETs consist of chromatin and histones along with serine proteases and myeloperoxidase and are induced by a great variety of infectious and non-infectious stimuli. NETosis is a kind of programmed neutrophil death characterized by chromatin decondensation and release of nuclear granular contents, mainly driven by peptidylarginine deiminase 4 citrullination of histones. Although classically related to the protection against infectious pathogens, nowadays NETs have been described as a player of several pathophysiological processes. Neutrophil dysregulation has been demonstrated in the pathogenesis of most representative vascular diseases, such as acute coronary syndrome, stroke and venous thrombosis. Indeed, NETs have been identified within atherosclerotic lesions and arterial thrombi in both human beings and animal models. Moreover, an imbalance in this mechanism has been proposed as a critical source of modified and/or externalized autoantigens in autoimmune and inflammatory diseases. Finally, an update on the role of NETs in the pathogenesis of cancer has been included. In the present review, based on papers released on PubMed and MEDLINE up to July 2017, we point to update the knowledge on NETs, from their structure to their roles in infectious diseases as well as in cardiovascular diseases, autoimmunity, metabolic disorders and cancer, with a look to future perspectives and therapeutic opportunities.

Authors' Contributions

A.B. and L.L. equally contributed to this work as first authors. A.B. and L.L. conceived the review and designed its structure. A.B., L.L., F.C., A.V. and C.D-C. collected data and prepared the manuscript. F.M., F.D. and G.G.C. gave suggestions to enhance the manuscript. All authors approved the final version of the manuscript.


* These authors equally contributed to this work as first authors.


 
  • References

  • 1 Brinkmann V, Reichard U, Goosmann C. , et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303 (5663): 1532-1535
  • 2 Yousefi S, Simon HU. NETosis - Does it really represent nature's “Suicide Bomber”?. Front Immunol 2016; 7: 328
  • 3 Demaurex N, Monod A, Lew DP, Krause KH. Characterization of receptor-mediated and store-regulated Ca2+ influx in human neutrophils. Biochem J 1994; 297 (Pt 3): 595-601
  • 4 Wang S, Wang Y. Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis. Biochim Biophys Acta 2013; 1829 (10) 1126-1135
  • 5 Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 2010; 191 (03) 677-691
  • 6 Yipp BG, Petri B, Salina D. , et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med 2012; 18 (09) 1386-1393
  • 7 Sousa-Rocha D, Thomaz-Tobias M, Diniz LF, Souza PS, Pinge-Filho P, Toledo KA. Trypanosoma cruzi and its soluble antigens induce NET release by stimulating toll-like receptors. PLoS One 2015; 10 (10) e0139569
  • 8 Mohanty T, Sjögren J, Kahn F. , et al. A novel mechanism for NETosis provides antimicrobial defense at the oral mucosa. Blood 2015; 126 (18) 2128-2137
  • 9 Nishinaka Y, Arai T, Adachi S, Takaori-Kondo A, Yamashita K. Singlet oxygen is essential for neutrophil extracellular trap formation. Biochem Biophys Res Commun 2011; 413 (01) 75-79
  • 10 Pilsczek FH, Salina D, Poon KK. , et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol 2010; 185 (12) 7413-7425
  • 11 Lewis HD, Liddle J, Coote JE. , et al. Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nat Chem Biol 2015; 11 (03) 189-191
  • 12 Branitzki-Heinemann K, Möllerherm H, Völlger L. , et al. Formation of neutrophil extracellular traps under low oxygen level. Front Immunol 2016; 7: 518
  • 13 Neeli I, Khan SN, Radic M. Histone deimination as a response to inflammatory stimuli in neutrophils. J Immunol 2008; 180 (03) 1895-1902
  • 14 Carestia A, Kaufman T, Rivadeneyra L. , et al. Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets. J Leukoc Biol 2016; 99 (01) 153-162
  • 15 Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ 2009; 16 (11) 1438-1444
  • 16 Sørensen OE, Borregaard N. Neutrophil extracellular traps - the dark side of neutrophils. J Clin Invest 2016; 126 (05) 1612-1620
  • 17 Seper A, Hosseinzadeh A, Gorkiewicz G. , et al. Vibrio cholerae evades neutrophil extracellular traps by the activity of two extracellular nucleases. PLoS Pathog 2013; 9 (09) e1003614
  • 18 Ueki S, Melo RC, Ghiran I, Spencer LA, Dvorak AM, Weller PF. Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood 2013; 121 (11) 2074-2083
  • 19 Ueki S, Konno Y, Takeda M. , et al. Eosinophil extracellular trap cell death-derived DNA traps: their presence in secretions and functional attributes. J Allergy Clin Immunol 2016; 137 (01) 258-267
  • 20 Morshed M, Hlushchuk R, Simon D. , et al. NADPH oxidase-independent formation of extracellular DNA traps by basophils. J Immunol 2014; 192 (11) 5314-5323
  • 21 Yousefi S, Morshed M, Amini P. , et al. Basophils exhibit antibacterial activity through extracellular trap formation. Allergy 2015; 70 (09) 1184-1188
  • 22 von Köckritz-Blickwede M, Goldmann O, Thulin P. , et al. Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood 2008; 111 (06) 3070-3080
  • 23 Chow OA, von Köckritz-Blickwede M, Bright AT. , et al. Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe 2010; 8 (05) 445-454
  • 24 McDonald B, Urrutia R, Yipp BG, Jenne CN, Kubes P. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe 2012; 12 (03) 324-333
  • 25 Luo L, Zhang S, Wang Y. , et al. Proinflammatory role of neutrophil extracellular traps in abdominal sepsis. Am J Physiol Lung Cell Mol Physiol 2014; 307 (07) L586-L596
  • 26 Martinod K, Fuchs TA, Zitomersky NL. , et al. PAD4-deficiency does not affect bacteremia in polymicrobial sepsis and ameliorates endotoxemic shock. Blood 2015; 125 (12) 1948-1956
  • 27 Clark SR, Ma AC, Tavener SA. , et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 2007; 13 (04) 463-469
  • 28 Gao X, Hao S, Yan H, Ding W, Li K, Li J. Neutrophil extracellular traps contribute to the intestine damage in endotoxemic rats. J Surg Res 2015; 195 (01) 211-218
  • 29 Allam R, Scherbaum CR, Darisipudi MN. , et al. Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4. J Am Soc Nephrol 2012; 23 (08) 1375-1388
  • 30 Czaikoski PG, Mota JM, Nascimento DC. , et al. Neutrophil extracellular traps induce organ damage during experimental and clinical sepsis. PLoS One 2016; 11 (02) e0148142
  • 31 Manda-Handzlik A, Bystrzycka W, Sieczkowska S, Demkow U, Ciepiela O. Antibiotics modulate the ability of neutrophils to release neutrophil extracellular traps. Adv Exp Med Biol 2017; 944: 47-52
  • 32 Aldridge AJ. Role of the neutrophil in septic shock and the adult respiratory distress syndrome. Eur J Surg 2002; 168 (04) 204-214
  • 33 Gonzalez DJ, Corriden R, Akong-Moore K, Olson J, Dorrestein PC, Nizet V. N-terminal ArgD peptides from the classical Staphylococcus aureus Agr system have cytotoxic and proinflammatory activities. Chem Biol 2014; 21 (11) 1457-1462
  • 34 Branzk N, Papayannopoulos V. Molecular mechanisms regulating NETosis in infection and disease. Semin Immunopathol 2013; 35 (04) 513-530
  • 35 Bianchi M, Hakkim A, Brinkmann V. , et al. Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood 2009; 114 (13) 2619-2622
  • 36 Berends ET, Horswill AR, Haste NM, Monestier M, Nizet V, von Köckritz-Blickwede M. Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J Innate Immun 2010; 2 (06) 576-586
  • 37 Bogaert D, De Groot R, Hermans PW. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis 2004; 4 (03) 144-154
  • 38 Chromek M, Slamová Z, Bergman P. , et al. The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med 2006; 12 (06) 636-641
  • 39 Mori Y, Yamaguchi M, Terao Y, Hamada S, Ooshima T, Kawabata S. α-Enolase of Streptococcus pneumoniae induces formation of neutrophil extracellular traps. J Biol Chem 2012; 287 (13) 10472-10481
  • 40 Wartha F, Beiter K, Albiger B. , et al. Capsule and D-alanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps. Cell Microbiol 2007; 9 (05) 1162-1171
  • 41 Beiter K, Wartha F, Albiger B, Normark S, Zychlinsky A, Henriques-Normark B. An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr Biol 2006; 16 (04) 401-407
  • 42 Buchanan JT, Simpson AJ, Aziz RK. , et al. DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr Biol 2006; 16 (04) 396-400
  • 43 Walker MJ, Hollands A, Sanderson-Smith ML. , et al. DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection. Nat Med 2007; 13 (08) 981-985
  • 44 Uchiyama S, Andreoni F, Schuepbach RA, Nizet V, Zinkernagel AS. DNase Sda1 allows invasive M1T1 Group A Streptococcus to prevent TLR9-dependent recognition. PLoS Pathog 2012; 8 (06) e1002736
  • 45 Kambas K, Mitroulis I, Apostolidou E. , et al. Autophagy mediates the delivery of thrombogenic tissue factor to neutrophil extracellular traps in human sepsis. PLoS One 2012; 7 (09) e45427
  • 46 Yan J, Meng X, Wancket LM. , et al. Glutathione reductase facilitates host defense by sustaining phagocytic oxidative burst and promoting the development of neutrophil extracellular traps. J Immunol 2012; 188 (05) 2316-2327
  • 47 Neumann A, Berends ET, Nerlich A. , et al. The antimicrobial peptide LL-37 facilitates the formation of neutrophil extracellular traps. Biochem J 2014; 464 (01) 3-11
  • 48 Khoruts A, Sadowsky MJ. Understanding the mechanisms of faecal microbiota transplantation. Nat Rev Gastroenterol Hepatol 2016; 13 (09) 508-516
  • 49 Möllerherm H, Neumann A, Schilcher K. , et al. Yersinia enterocolitica-mediated degradation of neutrophil extracellular traps (NETs). FEMS Microbiol Lett 2015; 362 (23) fnv192
  • 50 Ramos-Kichik V, Mondragón-Flores R, Mondragón-Castelán M. , et al. Neutrophil extracellular traps are induced by Mycobacterium tuberculosis . Tuberculosis (Edinb) 2009; 89 (01) 29-37
  • 51 Braian C, Hogea V, Stendahl O. Mycobacterium tuberculosis- induced neutrophil extracellular traps activate human macrophages. J Innate Immun 2013; 5 (06) 591-602
  • 52 Saitoh T, Komano J, Saitoh Y. , et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe 2012; 12 (01) 109-116
  • 53 Hemmers S, Teijaro JR, Arandjelovic S, Mowen KA. PAD4-mediated neutrophil extracellular trap formation is not required for immunity against influenza infection. PLoS One 2011; 6 (07) e22043
  • 54 Tripathi S, Verma A, Kim EJ, White MR, Hartshorn KL. LL-37 modulates human neutrophil responses to influenza A virus. J Leukoc Biol 2014; 96 (05) 931-938
  • 55 Moreno-Altamirano MM, Rodríguez-Espinosa O, Rojas-Espinosa O, Pliego-Rivero B, Sánchez-García FJ. Dengue virus serotype-2 interferes with the formation of neutrophil extracellular traps. Intervirology 2015; 58 (04) 250-259
  • 56 Cortjens B, de Boer OJ, de Jong R. , et al. Neutrophil extracellular traps cause airway obstruction during respiratory syncytial virus disease. J Pathol 2016; 238 (03) 401-411
  • 57 Raftery MJ, Lalwani P, Krautkrämer E. , et al. β2 integrin mediates hantavirus-induced release of neutrophil extracellular traps. J Exp Med 2014; 211 (07) 1485-1497
  • 58 Urban CF, Reichard U, Brinkmann V, Zychlinsky A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol 2006; 8 (04) 668-676
  • 59 Urban CF, Ermert D, Schmid M. , et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog 2009; 5 (10) e1000639
  • 60 Bruns S, Kniemeyer O, Hasenberg M. , et al. Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA. PLoS Pathog 2010; 6 (04) e1000873
  • 61 Rocha JD, Nascimento MT, Decote-Ricardo D. , et al. Capsular polysaccharides from Cryptococcus neoformans modulate production of neutrophil extracellular traps (NETs) by human neutrophils. Sci Rep 2015; 5: 8008
  • 62 Baker VS, Imade GE, Molta NB. , et al. Cytokine-associated neutrophil extracellular traps and antinuclear antibodies in Plasmodium falciparum infected children under six years of age. Malar J 2008; 7: 41
  • 63 Gabriel C, McMaster WR, Girard D, Descoteaux A. Leishmania donovani promastigotes evade the antimicrobial activity of neutrophil extracellular traps. J Immunol 2010; 185 (07) 4319-4327
  • 64 Guimarães-Costa AB, Nascimento MT, Froment GS. , et al. Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proc Natl Acad Sci U S A 2009; 106 (16) 6748-6753
  • 65 Abi Abdallah DS, Lin C, Ball CJ, King MR, Duhamel GE, Denkers EY. Toxoplasma gondii triggers release of human and mouse neutrophil extracellular traps. Infect Immun 2012; 80 (02) 768-777
  • 66 Muñoz-Caro T, Mena Huertas SJ, Conejeros I. , et al. Eimeria bovis-triggered neutrophil extracellular trap formation is CD11b-, ERK 1/2-, p38 MAP kinase- and SOCE-dependent. Vet Res (Faisalabad) 2015; 46: 23
  • 67 Behrendt JH, Ruiz A, Zahner H, Taubert A, Hermosilla C. Neutrophil extracellular trap formation as innate immune reactions against the apicomplexan parasite Eimeria bovis. Vet Immunol Immunopathol 2010; 133 (01) 1-8
  • 68 Muñoz Caro T, Hermosilla C, Silva LM, Cortes H, Taubert A. Neutrophil extracellular traps as innate immune reaction against the emerging apicomplexan parasite Besnoitia besnoiti. PLoS One 2014; 9 (03) e91415
  • 69 Maksimov P, Hermosilla C, Kleinertz S, Hirzmann J, Taubert A. Besnoitia besnoiti infections activate primary bovine endothelial cells and promote PMN adhesion and NET formation under physiological flow condition. Parasitol Res 2016; 115 (05) 1991-2001
  • 70 Montecucco F, Lenglet S, Gayet-Ageron A. , et al. Systemic and intraplaque mediators of inflammation are increased in patients symptomatic for ischemic stroke. Stroke 2010; 41 (07) 1394-1404
  • 71 von Brühl ML, Stark K, Steinhart A. , et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 2012; 209 (04) 819-835
  • 72 Menegazzo L, Ciciliot S, Poncina N. , et al. NETosis is induced by high glucose and associated with type 2 diabetes. Acta Diabetol 2015; 52 (03) 497-503
  • 73 Riyapa D, Buddhisa S, Korbsrisate S. , et al. Neutrophil extracellular traps exhibit antibacterial activity against Burkholderia pseudomallei and are influenced by bacterial and host factors. Infect Immun 2012; 80 (11) 3921-3929
  • 74 Joshi MB, Lad A, Bharath Prasad AS, Balakrishnan A, Ramachandra L, Satyamoorthy K. High glucose modulates IL-6 mediated immune homeostasis through impeding neutrophil extracellular trap formation. FEBS Lett 2013; 587 (14) 2241-2246
  • 75 Carestia A, Frechtel G, Cerrone G. , et al. NETosis before and after hyperglycemic control in type 2 diabetes mellitus patients. PLoS One 2016; 11 (12) e0168647
  • 76 Martinod K, Witsch T, Erpenbeck L. , et al. Peptidylarginine deiminase 4 promotes age-related organ fibrosis. J Exp Med 2017; 214 (02) 439-458
  • 77 Pálmai-Pallag T, Bachrati CZ. Inflammation-induced DNA damage and damage-induced inflammation: a vicious cycle. Microbes Infect 2014; 16 (10) 822-832
  • 78 Zhang Y, Guan L, Yu J. , et al. Pulmonary endothelial activation caused by extracellular histones contributes to neutrophil activation in acute respiratory distress syndrome. Respir Res 2016; 17 (01) 155
  • 79 Michels A, Albánez S, Mewburn J. , et al. Histones link inflammation and thrombosis through the induction of Weibel-Palade body exocytosis. J Thromb Haemost 2016; 14 (11) 2274-2286
  • 80 Carmona-Rivera C, Zhao W, Yalavarthi S, Kaplan MJ. Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase-2. Ann Rheum Dis 2015; 74 (07) 1417-1424
  • 81 Gupta AK, Joshi MB, Philippova M. , et al. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett 2010; 584 (14) 3193-3197
  • 82 Megens RT, Vijayan S, Lievens D. , et al. Presence of luminal neutrophil extracellular traps in atherosclerosis. Thromb Haemost 2012; 107 (03) 597-598
  • 83 de Boer OJ, Li X, Teeling P. , et al. Neutrophils, neutrophil extracellular traps and interleukin-17 associate with the organisation of thrombi in acute myocardial infarction. Thromb Haemost 2013; 109 (02) 290-297
  • 84 Knight JS, Luo W, O'Dell AA. , et al. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circ Res 2014; 114 (06) 947-956
  • 85 Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 2015; 349 (6245): 316-320
  • 86 Döring Y, Manthey HD, Drechsler M. , et al. Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis. Circulation 2012; 125 (13) 1673-1683
  • 87 Massberg S, Grahl L, von Bruehl ML. , et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 2010; 16 (08) 887-896
  • 88 Savchenko AS, Borissoff JI, Martinod K. , et al. VWF-mediated leukocyte recruitment with chromatin decondensation by PAD4 increases myocardial ischemia/reperfusion injury in mice. Blood 2014; 123 (01) 141-148
  • 89 Ge L, Zhou X, Ji WJ. , et al. Neutrophil extracellular traps in ischemia-reperfusion injury-induced myocardial no-reflow: therapeutic potential of DNase-based reperfusion strategy. Am J Physiol Heart Circ Physiol 2015; 308 (05) H500-H509
  • 90 Mangold A, Alias S, Scherz T. , et al. Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ Res 2015; 116 (07) 1182-1192
  • 91 Stakos DA, Kambas K, Konstantinidis T. , et al. Expression of functional tissue factor by neutrophil extracellular traps in culprit artery of acute myocardial infarction. Eur Heart J 2015; 36 (22) 1405-1414
  • 92 Quillard T, Araújo HA, Franck G, Shvartz E, Sukhova G, Libby P. TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. Eur Heart J 2015; 36 (22) 1394-1404
  • 93 Borissoff JI, Joosen IA, Versteylen MO. , et al. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol 2013; 33 (08) 2032-2040
  • 94 Kehrel BE, Fender AC. Resolving thromboinflammation in the brain after ischemic stroke?. Circulation 2016; 133 (22) 2128-2131
  • 95 De Meyer SF, Denorme F, Langhauser F, Geuss E, Fluri F, Kleinschnitz C. Thromboinflammation in stroke brain damage. Stroke 2016; 47 (04) 1165-1172
  • 96 Vallés J, Lago A, Santos MT. , et al. Neutrophil extracellular traps are increased in patients with acute ischemic stroke: prognostic significance. Thromb Haemost 2017; 117 (10) 1919-1929
  • 97 Kannemeier C, Shibamiya A, Nakazawa F. , et al. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci U S A 2007; 104 (15) 6388-6393
  • 98 Ammollo CT, Semeraro F, Xu J, Esmon NL, Esmon CT. Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J Thromb Haemost 2011; 9 (09) 1795-1803
  • 99 Petersen LC, Bjørn SE, Nordfang O. Effect of leukocyte proteinases on tissue factor pathway inhibitor. Thromb Haemost 1992; 67 (05) 537-541
  • 100 Brill A, Fuchs TA, Savchenko AS. , et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost 2012; 10 (01) 136-144
  • 101 Fuchs TA, Brill A, Duerschmied D. , et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 2010; 107 (36) 15880-15885
  • 102 Ward CM, Tetaz TJ, Andrews RK, Berndt MC. Binding of the von Willebrand factor A1 domain to histone. Thromb Res 1997; 86 (06) 469-477
  • 103 Fuchs TA, Bhandari AA, Wagner DD. Histones induce rapid and profound thrombocytopenia in mice. Blood 2011; 118 (13) 3708-3714
  • 104 Martinod K, Demers M, Fuchs TA. , et al. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci U S A 2013; 110 (21) 8674-8679
  • 105 El-Sayed OM, Dewyer NA, Luke CE. , et al. Intact Toll-like receptor 9 signaling in neutrophils modulates normal thrombogenesis in mice. J Vasc Surg 2016; 64 (05) 1450-1458.e1
  • 106 van Montfoort ML, Stephan F, Lauw MN. , et al. Circulating nucleosomes and neutrophil activation as risk factors for deep vein thrombosis. Arterioscler Thromb Vasc Biol 2013; 33 (01) 147-151
  • 107 Diaz JA, Fuchs TA, Jackson TO. , et al; for the Michigan Research Venous Group*. Plasma DNA is elevated in patients with deep vein thrombosis. J Vasc Surg Venous Lymphat Disord 2013; 1 (04) 341-348
  • 108 Savchenko AS, Martinod K, Seidman MA. , et al. Neutrophil extracellular traps form predominantly during the organizing stage of human venous thromboembolism development. J Thromb Haemost 2014; 12 (06) 860-870
  • 109 Gupta S, Kaplan MJ. The role of neutrophils and NETosis in autoimmune and renal diseases. Nat Rev Nephrol 2016; 12 (07) 402-413
  • 110 Lande R, Ganguly D, Facchinetti V. , et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med 2011; 3 (73) 73ra19
  • 111 Garcia-Romo GS, Caielli S, Vega B. , et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med 2011; 3 (73) 73ra20
  • 112 Sangaletti S, Tripodo C, Chiodoni C. , et al. Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloid dendritic cells toward ANCA induction and associated autoimmunity. Blood 2012; 120 (15) 3007-3018
  • 113 Puga I, Cols M, Barra CM. , et al. B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat Immunol 2011; 13 (02) 170-180
  • 114 Gehrke N, Mertens C, Zillinger T. , et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity 2013; 39 (03) 482-495
  • 115 Kahlenberg JM, Carmona-Rivera C, Smith CK, Kaplan MJ. Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J Immunol 2013; 190 (03) 1217-1226
  • 116 Leffler J, Martin M, Gullstrand B. , et al. Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J Immunol 2012; 188 (07) 3522-3531
  • 117 Liu CL, Tangsombatvisit S, Rosenberg JM. , et al. Specific post-translational histone modifications of neutrophil extracellular traps as immunogens and potential targets of lupus autoantibodies. Arthritis Res Ther 2012; 14 (01) R25
  • 118 Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A. , et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med 2013; 5 (178) 178ra40
  • 119 Grayson PC, Kaplan MJ. At the bench: neutrophil extracellular traps (NETs) highlight novel aspects of innate immune system involvement in autoimmune diseases. J Leukoc Biol 2016; 99 (02) 253-264
  • 120 Mahajan A, Herrmann M, Muñoz LE. Clearance deficiency and cell death pathways: a model for the pathogenesis of SLE. Front Immunol 2016; 7: 35
  • 121 Courtney PA, Crockard AD, Williamson K, Irvine AE, Kennedy RJ, Bell AL. Increased apoptotic peripheral blood neutrophils in systemic lupus erythematosus: relations with disease activity, antibodies to double stranded DNA, and neutropenia. Ann Rheum Dis 1999; 58 (05) 309-314
  • 122 Denny MF, Yalavarthi S, Zhao W. , et al. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. J Immunol 2010; 184 (06) 3284-3297
  • 123 Villanueva E, Yalavarthi S, Berthier CC. , et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol 2011; 187 (01) 538-552
  • 124 Lood C, Blanco LP, Purmalek MM. , et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med 2016; 22 (02) 146-153
  • 125 Hakkim A, Fürnrohr BG, Amann K. , et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci U S A 2010; 107 (21) 9813-9818
  • 126 Chauhan SK, Rai R, Singh VV, Rai M, Rai G. Differential clearance mechanisms, neutrophil extracellular trap degradation and phagocytosis, are operative in systemic lupus erythematosus patients with distinct autoantibody specificities. Immunol Lett 2015; 168 (02) 254-259
  • 127 Campbell AM, Kashgarian M, Shlomchik MJ. NADPH oxidase inhibits the pathogenesis of systemic lupus erythematosus. Sci Transl Med 2012; 4 (157) 157ra141
  • 128 Leffler J, Gullstrand B, Jönsen A. , et al. Degradation of neutrophil extracellular traps co-varies with disease activity in patients with systemic lupus erythematosus. Arthritis Res Ther 2013; 15 (04) R84
  • 129 Nakazawa D, Shida H, Tomaru U. , et al. Enhanced formation and disordered regulation of NETs in myeloperoxidase-ANCA-associated microscopic polyangiitis. J Am Soc Nephrol 2014; 25 (05) 990-997
  • 130 Zhang S, Lu X, Shu X. , et al. Elevated plasma cfDNA may be associated with active lupus nephritis and partially attributed to abnormal regulation of neutrophil extracellular traps (NETs) in patients with systemic lupus erythematosus. Intern Med 2014; 53 (24) 2763-2771
  • 131 Pérez-Sánchez C, Ruiz-Limón P, Aguirre MA. , et al. Diagnostic potential of NETosis-derived products for disease activity, atherosclerosis and therapeutic effectiveness in rheumatoid arthritis patients. J Autoimmun 2017; 82: 31-40
  • 132 Corsiero E, Pratesi F, Prediletto E, Bombardieri M, Migliorini P. NETosis as source of autoantigens in rheumatoid arthritis. Front Immunol 2016; 7: 485
  • 133 Foulquier C, Sebbag M, Clavel C. , et al. Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, PAD-3, and PAD-6 are expressed in rheumatoid arthritis synovium in close association with tissue inflammation. Arthritis Rheum 2007; 56 (11) 3541-3553
  • 134 Spengler J, Lugonja B, Ytterberg AJ. , et al. Release of active peptidyl arginine deiminases by neutrophils can explain production of extracellular citrullinated autoantigens in rheumatoid arthritis synovial fluid. Arthritis Rheumatol 2015; 67 (12) 3135-3145
  • 135 Wright HL, Makki FA, Moots RJ, Edwards SW. Low-density granulocytes: functionally distinct, immature neutrophils in rheumatoid arthritis with altered properties and defective TNF signalling. J Leukoc Biol 2017; 101 (02) 599-611
  • 136 Dwivedi N, Upadhyay J, Neeli I. , et al. Felty's syndrome autoantibodies bind to deiminated histones and neutrophil extracellular chromatin traps. Arthritis Rheum 2012; 64 (04) 982-992
  • 137 Masson-Bessière C, Sebbag M, Durieux JJ. , et al. In the rheumatoid pannus, anti-filaggrin autoantibodies are produced by local plasma cells and constitute a higher proportion of IgG than in synovial fluid and serum. Clin Exp Immunol 2000; 119 (03) 544-552
  • 138 Humby F, Bombardieri M, Manzo A. , et al. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med 2009; 6 (01) e1
  • 139 Croia C, Serafini B, Bombardieri M. , et al. Epstein-Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis. Ann Rheum Dis 2013; 72 (09) 1559-1568
  • 140 Kessenbrock K, Krumbholz M, Schönermarck U. , et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med 2009; 15 (06) 623-625
  • 141 Yoshida M, Sasaki M, Sugisaki K, Yamaguchi Y, Yamada M. Neutrophil extracellular trap components in fibrinoid necrosis of the kidney with myeloperoxidase-ANCA-associated vasculitis. Clin Kidney J 2013; 6 (03) 308-312
  • 142 Tang S, Zhang Y, Yin SW. , et al. Neutrophil extracellular trap formation is associated with autophagy-related signalling in ANCA-associated vasculitis. Clin Exp Immunol 2015; 180 (03) 408-418
  • 143 O'Sullivan KM, Lo CY, Summers SA. , et al. Renal participation of myeloperoxidase in antineutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis. Kidney Int 2015; 88 (05) 1030-1046
  • 144 Nakazawa D, Tomaru U, Yamamoto C, Jodo S, Ishizu A. Abundant neutrophil extracellular traps in thrombus of patient with microscopic polyangiitis. Front Immunol 2012; 3: 333
  • 145 Imamoto T, Nakazawa D, Shida H. , et al. Possible linkage between microscopic polyangiitis and thrombosis via neutrophil extracellular traps. Clin Exp Rheumatol 2014; 32 (01) 149-150
  • 146 Söderberg D, Kurz T, Motamedi A, Hellmark T, Eriksson P, Segelmark M. Increased levels of neutrophil extracellular trap remnants in the circulation of patients with small vessel vasculitis, but an inverse correlation to anti-neutrophil cytoplasmic antibodies during remission. Rheumatology (Oxford) 2015; 54 (11) 2085-2094
  • 147 Surmiak MP, Hubalewska-Mazgaj M, Wawrzycka-Adamczyk K, Szczeklik W, Musiał J, Sanak M. Circulating mitochondrial DNA in serum of patients with granulomatosis with polyangiitis. Clin Exp Immunol 2015; 181 (01) 150-155
  • 148 Wang H, Sha LL, Ma TT, Zhang LX, Chen M, Zhao MH. Circulating level of neutrophil extracellular traps is not a useful biomarker for assessing disease activity in antineutrophil cytoplasmic antibody-associated vasculitis. PLoS One 2016; 11 (02) e0148197
  • 149 Grayson PC, Carmona-Rivera C, Xu L. , et al; Rituximab in ANCA-Associated Vasculitis-Immune Tolerance Network Research Group. Neutrophil-related gene expression and low-density granulocytes associated with disease activity and response to treatment in antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheumatol 2015; 67 (07) 1922-1932
  • 150 Roth AJ, Ooi JD, Hess JJ. , et al. Epitope specificity determines pathogenicity and detectability in ANCA-associated vasculitis. J Clin Invest 2013; 123 (04) 1773-1783
  • 151 Ohlsson SM, Ohlsson S, Söderberg D. , et al. Neutrophils from vasculitis patients exhibit an increased propensity for activation by anti-neutrophil cytoplasmic antibodies. Clin Exp Immunol 2014; 176 (03) 363-372
  • 152 Ciavatta DJ, Yang J, Preston GA. , et al. Epigenetic basis for aberrant upregulation of autoantigen genes in humans with ANCA vasculitis. J Clin Invest 2010; 120 (09) 3209-3219
  • 153 Leffler J, Stojanovich L, Shoenfeld Y, Bogdanovic G, Hesselstrand R, Blom AM. Degradation of neutrophil extracellular traps is decreased in patients with antiphospholipid syndrome. Clin Exp Rheumatol 2014; 32 (01) 66-70
  • 154 Yalavarthi S, Gould TJ, Rao AN. , et al. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol 2015; 67 (11) 2990-3003
  • 155 Meng H, Yalavarthi S, Kanthi Y. , et al. In vivo role of neutrophil extracellular traps in antiphospholipid antibody-mediated venous thrombosis. Arthritis Rheumatol 2017; 69 (03) 655-667
  • 156 Gupta A, Hasler P, Gebhardt S, Holzgreve W, Hahn S. Occurrence of neutrophil extracellular DNA traps (NETs) in pre-eclampsia: a link with elevated levels of cell-free DNA?. Ann N Y Acad Sci 2006; 1075: 118-122
  • 157 Gupta AK, Hasler P, Holzgreve W, Hahn S. Neutrophil NETs: a novel contributor to preeclampsia-associated placental hypoxia?. Semin Immunopathol 2007; 29 (02) 163-167
  • 158 Marder W, Knight JS, Kaplan MJ. , et al. Placental histology and neutrophil extracellular traps in lupus and pre-eclampsia pregnancies. Lupus Sci Med 2016; 3 (01) e000134
  • 159 Skrzeczynska-Moncznik J, Wlodarczyk A, Zabieglo K. , et al. Secretory leukocyte proteinase inhibitor-competent DNA deposits are potent stimulators of plasmacytoid dendritic cells: implication for psoriasis. J Immunol 2012; 189 (04) 1611-1617
  • 160 Hu SC, Yu HS, Yen FL, Lin CL, Chen GS, Lan CC. Neutrophil extracellular trap formation is increased in psoriasis and induces human β-defensin-2 production in epidermal keratinocytes. Sci Rep 2016; 6: 31119
  • 161 Dwyer M, Shan Q, D'Ortona S. , et al. Cystic fibrosis sputum DNA has NETosis characteristics and neutrophil extracellular trap release is regulated by macrophage migration-inhibitory factor. J Innate Immun 2014; 6 (06) 765-779
  • 162 Marcos V, Zhou-Suckow Z, Önder Yildirim A. , et al. Free DNA in cystic fibrosis airway fluids correlates with airflow obstruction. Mediators Inflamm 2015; 2015: 408935
  • 163 Schauer C, Janko C, Munoz LE. , et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat Med 2014; 20 (05) 511-517
  • 164 Schett G, Schauer C, Hoffmann M, Herrmann M. Why does the gout attack stop? A roadmap for the immune pathogenesis of gout. RMD Open 2015; 1 (01) (Suppl. 01) e000046
  • 165 Bennike TB, Carlsen TG, Ellingsen T. , et al. Neutrophil extracellular traps in ulcerative colitis: a proteome analysis of intestinal biopsies. Inflamm Bowel Dis 2015; 21 (09) 2052-2067
  • 166 He Z, Si Y, Jiang T. , et al. Phosphotidylserine exposure and neutrophil extracellular traps enhance procoagulant activity in patients with inflammatory bowel disease. Thromb Haemost 2016; 115 (04) 738-751
  • 167 Saffarzadeh M, Juenemann C, Queisser MA. , et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One 2012; 7 (02) e32366
  • 168 Cheng OZ, Palaniyar N. NET balancing: a problem in inflammatory lung diseases. Front Immunol 2013; 4: 1
  • 169 Rahman S, Gadjeva M. Does NETosis contribute to the bacterial pathoadaptation in cystic fibrosis?. Front Immunol 2014; 5: 378
  • 170 Yoo DG, Floyd M, Winn M, Moskowitz SM, Rada B. NET formation induced by Pseudomonas aeruginosa cystic fibrosis isolates measured as release of myeloperoxidase-DNA and neutrophil elastase-DNA complexes. Immunol Lett 2014; 160 (02) 186-194
  • 171 Skopelja S, Hamilton BJ, Jones JD. , et al. The role for neutrophil extracellular traps in cystic fibrosis autoimmunity. JCI Insight 2016; 1 (17) e88912
  • 172 Ungurs MJ, Sinden NJ, Stockley RA. Progranulin is a substrate for neutrophil-elastase and proteinase-3 in the airway and its concentration correlates with mediators of airway inflammation in COPD. Am J Physiol Lung Cell Mol Physiol 2014; 306 (01) L80-L87
  • 173 Obermayer A, Stoiber W, Krautgartner WD. , et al. New aspects on the structure of neutrophil extracellular traps from chronic obstructive pulmonary disease and in vitro generation. PLoS One 2014; 9 (05) e97784
  • 174 Pedersen F, Marwitz S, Holz O. , et al. Neutrophil extracellular trap formation and extracellular DNA in sputum of stable COPD patients. Respir Med 2015; 109 (10) 1360-1362
  • 175 Wright TK, Gibson PG, Simpson JL, McDonald VM, Wood LG, Baines KJ. Neutrophil extracellular traps are associated with inflammation in chronic airway disease. Respirology 2016; 21 (03) 467-475
  • 176 Grabcanovic-Musija F, Obermayer A, Stoiber W. , et al. Neutrophil extracellular trap (NET) formation characterises stable and exacerbated COPD and correlates with airflow limitation. Respir Res 2015; 16: 59
  • 177 Dicker AJ, Crichton ML, Pumphrey EG. , et al. Neutrophil extracellular traps are associated with disease severity and microbiota diversity in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 2017 May 13. pii: S0091-6749(17)30746-7.
  • 178 Haldar P, Pavord ID. Noneosinophilic asthma: a distinct clinical and pathologic phenotype. J Allergy Clin Immunol 2007; 119 (05) 1043-1052 , quiz 1053–1054
  • 179 Choi Y, Pham LD, Lee DH. , et al. Neutrophil extracellular DNA traps induce autoantigen production by airway epithelial cells. Mediators Inflamm 2017; 2017: 5675029
  • 180 Dworski R, Simon HU, Hoskins A, Yousefi S. Eosinophil and neutrophil extracellular DNA traps in human allergic asthmatic airways. J Allergy Clin Immunol 2011; 127 (05) 1260-1266
  • 181 Yousefi S, Gold JA, Andina N. , et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 2008; 14 (09) 949-953
  • 182 Cunha AA, Porto BN, Nuñez NK. , et al. Extracellular DNA traps in bronchoalveolar fluid from a murine eosinophilic pulmonary response. Allergy 2014; 69 (12) 1696-1700
  • 183 da Cunha AA, Nuñez NK, de Souza RG. , et al. Recombinant human deoxyribonuclease attenuates oxidative stress in a model of eosinophilic pulmonary response in mice. Mol Cell Biochem 2016; 413 (1-2): 47-55
  • 184 Thomas GM, Carbo C, Curtis BR. , et al. Extracellular DNA traps are associated with the pathogenesis of TRALI in humans and mice. Blood 2012; 119 (26) 6335-6343
  • 185 Caudrillier A, Kessenbrock K, Gilliss BM. , et al. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest 2012; 122 (07) 2661-2671
  • 186 Semeraro F, Ammollo CT, Morrissey JH. , et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood 2011; 118 (07) 1952-1961
  • 187 Galdiero MR, Garlanda C, Jaillon S, Marone G, Mantovani A. Tumor associated macrophages and neutrophils in tumor progression. J Cell Physiol 2013; 228 (07) 1404-1412
  • 188 Berger-Achituv S, Brinkmann V, Abed UA. , et al. A proposed role for neutrophil extracellular traps in cancer immunoediting. Front Immunol 2013; 4: 48
  • 189 Houghton AM, Rzymkiewicz DM, Ji H. , et al. Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat Med 2010; 16 (02) 219-223
  • 190 Sangaletti S, Tripodo C, Vitali C. , et al. Defective stromal remodeling and neutrophil extracellular traps in lymphoid tissues favor the transition from autoimmunity to lymphoma. Cancer Discov 2014; 4 (01) 110-129
  • 191 Gaida MM, Steffen TG, Günther F. , et al. Polymorphonuclear neutrophils promote dyshesion of tumor cells and elastase-mediated degradation of E-cadherin in pancreatic tumors. Eur J Immunol 2012; 42 (12) 3369-3380
  • 192 Kolaczkowska E, Jenne CN, Surewaard BG. , et al. Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature. Nat Commun 2015; 6: 6673
  • 193 An H, Zhu Y, Xie H. , et al. Increased expression of interleukin-8 is an independent indicator of poor prognosis in clear-cell renal cell carcinoma. Tumour Biol 2016; 37 (04) 4523-4529
  • 194 Wang J, Wang Y, Wang S. , et al. Bone marrow-derived mesenchymal stem cell-secreted IL-8 promotes the angiogenesis and growth of colorectal cancer. Oncotarget 2015; 6 (40) 42825-42837
  • 195 Demers M, Wong SL, Martinod K. , et al. Priming of neutrophils toward NETosis promotes tumor growth. OncoImmunology 2016; 5 (05) e1134073
  • 196 Zhao JJ, Pan K, Wang W. , et al. The prognostic value of tumor-infiltrating neutrophils in gastric adenocarcinoma after resection. PLoS One 2012; 7 (03) e33655
  • 197 Perisanidis C, Kornek G, Pöschl PW. , et al. High neutrophil-to-lymphocyte ratio is an independent marker of poor disease-specific survival in patients with oral cancer. Med Oncol 2013; 30 (01) 334
  • 198 Xiao WK, Chen D, Li SQ, Fu SJ, Peng BG, Liang LJ. Prognostic significance of neutrophil-lymphocyte ratio in hepatocellular carcinoma: a meta-analysis. BMC Cancer 2014; 14: 117
  • 199 Bald T, Quast T, Landsberg J. , et al. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 2014; 507 (7490): 109-113
  • 200 Alfaro C, Teijeira A, Oñate C. , et al. Tumor-produced interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps (NETs). Clin Cancer Res 2016; 22 (15) 3924-3936
  • 201 Baj-Krzyworzeka M, Baran J, Weglarczyk K. , et al. Tumour-derived microvesicles (TMV) mimic the effect of tumour cells on monocyte subpopulations. Anticancer Res 2010; 30 (09) 3515-3519
  • 202 Terraube V, Marx I, Denis CV. Role of von Willebrand factor in tumor metastasis. Thromb Res 2007; 120 (Suppl. 02) S64-S70
  • 203 Erpenbeck L, Nieswandt B, Schön M, Pozgajova M, Schön MP. Inhibition of platelet GPIb alpha and promotion of melanoma metastasis. J Invest Dermatol 2010; 130 (02) 576-586
  • 204 Bauer AT, Suckau J, Frank K. , et al. von Willebrand factor fibers promote cancer-associated platelet aggregation in malignant melanoma of mice and humans. Blood 2015; 125 (20) 3153-3163
  • 205 Guglietta S, Chiavelli A, Zagato E. , et al. Coagulation induced by C3aR-dependent NETosis drives protumorigenic neutrophils during small intestinal tumorigenesis. Nat Commun 2016; 7: 11037
  • 206 Spicer JD, McDonald B, Cools-Lartigue JJ. , et al. Neutrophils promote liver metastasis via Mac-1-mediated interactions with circulating tumor cells. Cancer Res 2012; 72 (16) 3919-3927
  • 207 Labelle M, Begum S, Hynes RO. Platelets guide the formation of early metastatic niches. Proc Natl Acad Sci U S A 2014; 111 (30) E3053-E3061
  • 208 Huh SJ, Liang S, Sharma A, Dong C, Robertson GP. Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res 2010; 70 (14) 6071-6082
  • 209 Ramirez GA, Manfredi AA, Rovere-Querini P, Maugeri N. Bet on NETs! Or on how to translate basic science into clinical practice. Front Immunol 2016; 7: 417
  • 210 Nauseef WM, Kubes P. Pondering neutrophil extracellular traps with healthy skepticism. Cell Microbiol 2016; 18 (10) 1349-1357
  • 211 Patel S, Kumar S, Jyoti A. , et al. Nitric oxide donors release extracellular traps from human neutrophils by augmenting free radical generation. Nitric Oxide 2010; 22 (03) 226-234
  • 212 Garcia RJ, Francis L, Dawood M, Lai ZW, Faraone SV, Perl A. Attention deficit and hyperactivity disorder scores are elevated and respond to N-acetylcysteine treatment in patients with systemic lupus erythematosus. Arthritis Rheum 2013; 65 (05) 1313-1318
  • 213 Lai ZW, Hanczko R, Bonilla E. , et al. N-acetylcysteine reduces disease activity by blocking mammalian target of rapamycin in T cells from systemic lupus erythematosus patients: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum 2012; 64 (09) 2937-2946
  • 214 Wahono CS, Rusmini H, Soelistyoningsih D. , et al. Effects of 1,25(OH)2D3 in immune response regulation of systemic lupus erithematosus (SLE) patient with hypovitamin D. Int J Clin Exp Med 2014; 7 (01) 22-31
  • 215 Smith CK, Vivekanandan-Giri A, Tang C. , et al. Neutrophil extracellular trap-derived enzymes oxidize high-density lipoprotein: an additional proatherogenic mechanism in systemic lupus erythematosus. Arthritis Rheumatol 2014; 66 (09) 2532-2544
  • 216 Cohen SB, Emery P, Greenwald MW. , et al; REFLEX Trial Group. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: Results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum 2006; 54 (09) 2793-2806
  • 217 Stone JH, Merkel PA, Spiera R. , et al; RAVE-ITN Research Group. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med 2010; 363 (03) 221-232
  • 218 Schreiber A, Otto B, Ju X. , et al. Membrane proteinase 3 expression in patients with Wegener's granulomatosis and in human hematopoietic stem cell-derived neutrophils. J Am Soc Nephrol 2005; 16 (07) 2216-2224
  • 219 Huang YM, Wang H, Wang C, Chen M, Zhao MH. Promotion of hypercoagulability in antineutrophil cytoplasmic antibody-associated vasculitis by C5a-induced tissue factor-expressing microparticles and neutrophil extracellular traps. Arthritis Rheumatol 2015; 67 (10) 2780-2790
  • 220 Sciascia S, Radin M, Yazdany J. , et al. Expanding the therapeutic options for renal involvement in lupus: eculizumab, available evidence. Rheumatol Int 2017; 37 (08) 1249-1255
  • 221 Barnado A, Crofford LJ, Oates JC. At the bedside: neutrophil extracellular traps (NETs) as targets for biomarkers and therapies in autoimmune diseases. J Leukoc Biol 2016; 99 (02) 265-278
  • 222 Knight JS, Zhao W, Luo W. , et al. Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. J Clin Invest 2013; 123 (07) 2981-2993
  • 223 Knight JS, Subramanian V, O'Dell AA. , et al. Peptidylarginine deiminase inhibition disrupts NET formation and protects against kidney, skin and vascular disease in lupus-prone MRL/lpr mice. Ann Rheum Dis 2015; 74 (12) 2199-2206
  • 224 Willis VC, Gizinski AM, Banda NK. , et al. N-α-benzoyl-N5-(2-chloro-1-iminoethyl)-L-ornithine amide, a protein arginine deiminase inhibitor, reduces the severity of murine collagen-induced arthritis. J Immunol 2011; 186 (07) 4396-4404
  • 225 Ham A, Rabadi M, Kim M. , et al. Peptidyl arginine deiminase-4 activation exacerbates kidney ischemia-reperfusion injury. Am J Physiol Renal Physiol 2014; 307 (09) F1052-F1062
  • 226 Marin-Esteban V, Turbica I, Dufour G. , et al. Afa/Dr diffusely adhering Escherichia coli strain C1845 induces neutrophil extracellular traps that kill bacteria and damage human enterocyte-like cells. Infect Immun 2012; 80 (05) 1891-1899
  • 227 Pieterse E, Rother N, Yanginlar C, Hilbrands LB, van der Vlag J. Neutrophils discriminate between lipopolysaccharides of different bacterial sources and selectively release neutrophil extracellular traps. Front Immunol 2016; 7: 484
  • 228 Gillenius E, Urban CF. The adhesive protein invasin of Yersinia pseudotuberculosis induces neutrophil extracellular traps via β1 integrins. Microbes Infect 2015; 17 (05) 327-336
  • 229 Byrd AS, O'Brien XM, Johnson CM, Lavigne LM, Reichner JS. An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans. J Immunol 2013; 190 (08) 4136-4148
  • 230 Waisberg M, Molina-Cruz A, Mizurini DM. , et al. Plasmodium falciparum infection induces expression of a mosquito salivary protein (Agaphelin) that targets neutrophil function and inhibits thrombosis without impairing hemostasis. PLoS Pathog 2014; 10 (09) e1004338
  • 231 Shimony A, Zahger D, Gilutz H. , et al. Cell free DNA detected by a novel method in acute ST-elevation myocardial infarction patients. Acute Card Care 2010; 12 (03) 109-111
  • 232 Cui M, Fan M, Jing R. , et al. Cell-Free circulating DNA: a new biomarker for the acute coronary syndrome. Cardiology 2013; 124 (02) 76-84
  • 233 Helseth R, Solheim S, Arnesen H, Seljeflot I, Opstad TB. The time course of markers of neutrophil extracellular traps in patients undergoing revascularisation for acute myocardial infarction or stable angina pectoris. Mediators Inflamm 2016; 2016: 2182358
  • 234 Rainer TH, Wong LK, Lam W. , et al. Prognostic use of circulating plasma nucleic acid concentrations in patients with acute stroke. Clin Chem 2003; 49 (04) 562-569
  • 235 Geiger S, Holdenrieder S, Stieber P. , et al. Nucleosomes in serum of patients with early cerebral stroke. Cerebrovasc Dis 2006; 21 (1-2): 32-37
  • 236 Lam NY, Rainer TH, Wong LK, Lam W, Lo YM. Plasma DNA as a prognostic marker for stroke patients with negative neuroimaging within the first 24 h of symptom onset. Resuscitation 2006; 68 (01) 71-78
  • 237 Geiger S, Holdenrieder S, Stieber P. , et al. Nucleosomes as a new prognostic marker in early cerebral stroke. J Neurol 2007; 254 (05) 617-623
  • 238 Tsai NW, Lin TK, Chen SD. , et al. The value of serial plasma nuclear and mitochondrial DNA levels in patients with acute ischemic stroke. Clin Chim Acta 2011; 412 (5-6): 476-479
  • 239 Hirose T, Hamaguchi S, Matsumoto N. , et al. Presence of neutrophil extracellular traps and citrullinated histone H3 in the bloodstream of critically ill patients. PLoS One 2014; 9 (11) e111755
  • 240 Thålin C, Demers M, Blomgren B. , et al. NETosis promotes cancer-associated arterial microthrombosis presenting as ischemic stroke with troponin elevation. Thromb Res 2016; 139: 56-64
  • 241 Laridan E, Denorme F, Desender L. , et al. Neutrophil extracellular traps in ischemic stroke thrombi. Ann Neurol 2017; 82 (02) 223-232