Thromb Haemost 2017; 117(07): 1296-1316
DOI: 10.1160/TH16-12-0943
Position Paper
Schattauer GmbH

Microvesicles in vascular homeostasis and diseases

Position Paper of the European Society of Cardiology (ESC) Working Group on Atherosclerosis and Vascular Biology
Victoria C. Ridger*
1   Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health and the INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
,
Chantal M. Boulanger*
2   INSERM UMR-S 970, Paris Cardiovascular Research Center – PARCC, Paris, France
3   Université Paris Descartes, Sorbonne Paris Cité, Paris, France
,
Anne Angelillo-Scherrer
4   Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
5   Department of Clinical Research, University of Bern, Bern, Switzerland
,
Lina Badimon
6   Cardiovascular Research Center (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain
7   Cardiovascular Research Chair, UAB, Barcelona, Spain
,
Olivier Blanc-Brude
2   INSERM UMR-S 970, Paris Cardiovascular Research Center – PARCC, Paris, France
3   Université Paris Descartes, Sorbonne Paris Cité, Paris, France
,
Marie-Luce Bochaton-Piallat
8   Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
,
Eric Boilard
9   Centre de Recherche du CHU de Québec, Université Laval, Department of Infectious diseases and Immunity, Quebec City, Quebec, Canada
,
Edit I. Buzas
10   Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
,
Andreas Caporali
11   University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
,
Francoise Dignat-George
12   Aix-Marseille University, INSERM, VRCM, UMR-S1076, UFR de Pharmacie, Marseille, France
13   Department of Hematology and Vascular Biology, CHU La Conception, APHM, Marseille, France
,
Paul C. Evans
1   Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health and the INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
,
Romaric Lacroix
12   Aix-Marseille University, INSERM, VRCM, UMR-S1076, UFR de Pharmacie, Marseille, France
13   Department of Hematology and Vascular Biology, CHU La Conception, APHM, Marseille, France
,
Esther Lutgens
14   Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands
15   Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
,
Daniel F. J. Ketelhuth
16   Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
,
Rienk Nieuwland
17   Laboratory of Experimental Clinical Chemistry, Vesicle Observation Center, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
,
Florence Toti
18   Faculty of Pharmacy, UMR CNRS 7213, University of Strasbourg, Strasbourg, France
,
Jose Tuñon
19   IIS-Fundación Jiménez Díaz, Madrid, Spain
20   Autónoma University, Madrid, Spain
,
Christian Weber
15   Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
21   Cardiovascular Research Institute Maastricht (CARIM), 6229 ER Maastricht, The Netherlands
,
Imo E. Hoefer
22   Laboratory of Clinical Chemistry and Hematology, UMC Utrecht, Netherlands
› Institutsangaben
REVIEWERS:
Gregory Y. H. Lip review coordinator
23   Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
,
Nikos Werner
24   Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Bonn, Germany
,
Eduard Shantsila
23   Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
,
Hugo ten Cate
25   UNS 50, University Medical Center, Maastricht, The Netherlands
,
Mark Thomas
23   Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
,
Paul Harrison
26   Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 19. Dezember 2016

Accepted after major revision: 27. April 2017

Publikationsdatum:
28. November 2017 (online)

Summary

Microvesicles are members of the family of extracellular vesicles shed from the plasma membrane of activated or apoptotic cells. Microvesicles were initially characterised by their pro-coagulant activity and described as “microparticles”. There is mounting evidence revealing a role for microvesicles in intercellular communication, with particular relevance to hemostasis and vascular biology. Coupled with this, the potential of microvesicles as meaningful biomarkers is under intense investigation. This Position Paper will summarise the current knowledge on the mechanisms of formation and composition of microvesicles of endothelial, platelet, red blood cell and leukocyte origin. This paper will also review and discuss the different methods used for their analysis and quantification, will underline the potential biological roles of these vesicles with respect to vascular homeostasis and thrombosis and define important themes for future research.

* Equal contribution to this manuscript.


 
  • References

  • 1 Chargaff E, West R. The biological significance of the thromboplastic protein of blood. J Biol Chem 1946; 166: 189-197.
  • 2 Hargett LA, Bauer NN. On the origin of microparticles: From “platelet dust„ to mediators of intercellular communication. Pulm Circ 2013; 3: 329-340.
  • 3 Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol 1967; 13: 269-288.
  • 4 Boilard E. et al. The diversity of platelet microparticles. Curr Opin Hematol 2015; 22: 437-444.
  • 5 Heijnen HF. et al. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 1999; 94: 3791-3799.
  • 6 Aatonen MT. et al. Isolation and characterisation of platelet-derived extracellular vesicles. J Extracell Vesicles 2014; 3 doi: 10.3402/jev.v3.24692.
  • 7 Garcia BA. et al. The platelet microparticle proteome. J Proteome Res 2005; 4: 1516-1521.
  • 8 Peterson DB. et al. Comparative proteomic analysis of PAI-1 and TNF-alpha-derived endothelial microparticles. Proteomics 2008; 8: 2430-2446.
  • 9 Amabile N. et al. Increased CD62e(+) endothelial microparticle levels predict poor outcome in pulmonary hypertension patients. J Heart Lung Transplant 2009; 28: 1081-1086.
  • 10 Bakouboula B. et al. Procoagulant membrane microparticles correlate with the severity of pulmonary arterial hypertension. Am J Respir Crit Care Med 2008; 177: 536-543.
  • 11 Delabranche X. et al. Early Detection of Disseminated Intravascular Coagulation During Septic Shock: A Multicentre Prospective Study. Crit Care Med 2016; 44: e930-e939.
  • 12 Kurtzman N. et al. Personalized cytomic assessment of vascular health: Evaluation of the vascular health profile in diabetes mellitus. Cytometry B Clin Cytom 2013; 84: 255-266.
  • 13 Suades R. et al. Circulating microparticle signature in coronary and peripheral blood of ST elevation myocardial infarction patients in relation to pain-to-PCI elapsed time. Int J Cardiol 2016; 202: 378-387.
  • 14 Wekesa AL. et al. Predicting carotid artery disease and plaque instability from cell-derived microparticles. Eur J Vasc Endovasc Surg 2014; 48: 489-495.
  • 15 Contreras FX. et al. Transbilayer (flip-flop) lipid motion and lipid scrambling in membranes. FEBS Lett 2010; 584: 1779-1786.
  • 16 Awojoodu AO. et al. Acid sphingomyelinase is activated in sickle cell erythrocytes and contributes to inflammatory microparticle generation in SCD. Blood 2014; 124: 1941-1950.
  • 17 Bianco F. et al. Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J 2009; 28: 1043-1054.
  • 18 Bouter A. et al. Review: Annexin-A5 and cell membrane repair. Placenta 2015; 36 (Suppl. 01) S43-S49.
  • 19 Draeger A, Babiychuk EB. Ceramide in plasma membrane repair. Handb Exp Pharmacol 2013; 216: 341-353.
  • 20 Nabhan JF. et al. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc Natl Acad Sci USA 2012; 109: 4146-4151.
  • 21 Derganc J. et al. Membrane bending: the power of protein imbalance. Trends Biochem Sci 2013; 38: 576-584.
  • 22 Mattheij NJ. et al. Survival protein anoctamin-6 controls multiple platelet responses including phospholipid scrambling, swelling, and protein cleavage. FASEB J 2016; 30: 727-737.
  • 23 van Geffen JP. et al. Platelets and coagulation in thrombus formation: aberrations in the Scott syndrome. Thromb Res 2016; 141 (Suppl. 02) S12-S16.
  • 24 Shi Z, Baumgart T. Dynamics and instabilities of lipid bilayer membrane shapes. Adv Colloid Interface Sci 2014; 208: 76-88.
  • 25 Bevers EM, Williamson PL. Getting to the Outer Leaflet: Physiology of Phosphatidylserine Exposure at the Plasma Membrane. Physiol Rev 2016; 96: 605-645.
  • 26 Coleman JA. et al. Mammalian P4-ATPases and ABC transporters and their role in phospholipid transport. Biochim Biophys Acta 2013; 1831: 555-574.
  • 27 Wolfs JL. et al. Activated scramblase and inhibited aminophospholipid translocase cause phosphatidylserine exposure in a distinct platelet fraction. Cell Mol Life Sci 2005; 62: 1514-1525.
  • 28 Basse F. et al. Translocation of spin-labeled phospholipids through plasma membrane during thrombin- and ionophore A23187-induced platelet activation. Biochemistry 1993; 32: 2337-2344.
  • 29 Smeets EF. et al. Calcium-induced transbilayer scrambling of fluorescent phospholipid analogs in platelets and erythrocytes. Biochim Biophys Acta 1994; 1195: 281-286.
  • 30 Morel O. et al. Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler Thromb Vasc Biol 2011; 31: 15-26.
  • 31 Kunzelmann-Marche C. et al. Loss of plasma membrane phospholipid asymmetry requires raft integrity. Role of transient receptor potential channels and ERK pathway. J Biol Chem 2002; 277: 19876-19881.
  • 32 del Conde I. et al. Effect of P-selectin on phosphatidylserine exposure and surface-dependent thrombin generation on monocytes. Arterioscler Thromb Vasc Biol 2005; 25: 1065-1070.
  • 33 Fujii T. et al. TMEM16F is required for phosphatidylserine exposure and microparticle release in activated mouse platelets. Proc Natl Acad Sci USA 2015; 112: 12800-12805.
  • 34 Lhermusier T. et al. Platelet membrane phospholipid asymmetry: from the characterisation of a scramblase activity to the identification of an essential protein mutated in Scott syndrome. J Thromb Haemost 2011; 9: 1883-1891.
  • 35 Yu K. et al. Identification of a lipid scrambling domain in ANO6/TMEM16F. Elife 2015; 4: e06901.
  • 36 Yang H. et al. TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation. Cell 2012; 151: 111-122.
  • 37 Bevers EM, Williamson PL. Phospholipid scramblase: an update. FEBS Lett 2010; 584: 2724-2730.
  • 38 Brooks MB. et al. Scott syndrome dogs have impaired coated-platelet formation and calcein-release but normal mitochondrial depolarisation. J Thromb Haemost 2007; 5: 1972-1974.
  • 39 Brooks MB. et al. Exclusion of ABCA-1 as a candidate gene for canine Scott syndrome. J Thromb Haemost 2008; 6: 1608-1610.
  • 40 Weiss HJ. Impaired platelet procoagulant mechanisms in patients with bleeding disorders. Semin Thromb Haemost 2009; 35: 233-241.
  • 41 Toti F. et al. Scott syndrome, characterized by impaired transmembrane migration of procoagulant phosphatidylserine and haemorrhagic complications, is an inherited disorder. Blood 1996; 87: 1409-1415.
  • 42 Williamson P. et al. Phospholipid scramblase activation pathways in lymphocytes. Biochemistry 2001; 40: 8065-8072.
  • 43 Gidon-Jeangirard C. et al. Annexin V delays apoptosis while exerting an external constraint preventing the release of CD4+ and PrPc+ membrane particles in a human T lymphocyte model. J Immunol 1999; 162: 5712-5718.
  • 44 Stampfuss JJ. et al. Complete downmodulation of P-selectin glycoprotein ligand in monocytes undergoing apoptosis. Arterioscler Thromb Vasc Biol 2008; 28: 1375-1378.
  • 45 Baj-Krzyworzeka M. et al. Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chaemotaxis of hematopoietic cells. Exp Hematol 2002; 30: 450-459.
  • 46 Jimenez JJ. et al. Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb Res 2003; 109: 175-180.
  • 47 Milioli M. et al. Quantitative proteomics analysis of platelet-derived microparticles reveals distinct protein signatures when stimulated by different physiological agonists. J Proteomics 2015; 121: 56-66.
  • 48 Connor DE. et al. The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib. Thromb Haemost 2010; 103: 1044-1052.
  • 49 Arraud N. et al. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J Thromb Haemost 2014; 12: 614-627.
  • 50 Shet AS. et al. Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood 2003; 102: 2678-2683.
  • 51 Key NS. Analysis of tissue factor positive microparticles. Thromb Res 2010; 125 (Suppl. 01) S42-S45.
  • 52 Rautou PE, Mackman N. Del-etion of microvesicles from the circulation. Circulation 2012; 125: 1601-1604.
  • 53 Montoro-Garcia S. et al. An innovative flow cytometric approach for small-size platelet microparticles: influence of calcium. Thromb Haemost 2012; 108: 373-383.
  • 54 Freyssinet JM, Toti F. Membrane microparticle determination: at least seeing what’s being sized!. J Thromb Haemost 2010; 8: 311-314.
  • 55 Dasgupta SK. et al. Lactadherin and clearance of platelet-derived microvesicles. Blood 2009; 113: 1332-1339.
  • 56 Gyorgy B. et al. Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood 2011; 117: e39-e48.
  • 57 Lacroix R. et al. Impact of pre-analytical parameters on the measurement of circulating microparticles: towards standardisation of protocol. J Thromb Haemost 2012; 10: 437-446.
  • 58 Darabi M, Kontush A. Phosphatidylserine in atherosclerosis. Curr Opin Lipidol 2016; 27: 414-420.
  • 59 Cauwenberghs S. et al. Shedding of procoagulant microparticles from unstimulated platelets by integrin-mediated destabilisation of actin cytoskeleton. FEBS Lett 2006; 580: 5313-5320.
  • 60 Flaumenhaft R. et al. Megakaryocyte-derived microparticles: direct visualisation and distinction from platelet-derived microparticles. Blood 2009; 113: 1112-1121.
  • 61 Shcherbina A. et al. Dynamic association of moesin with the membrane skeleton of thrombin- activated platelets. Blood 1999; 93: 2128-2129.
  • 62 Fox JE. et al. Evidence that agonist-induced activation of calpain causes the shedding of procoagulant-containing microvesicles from the membrane of aggregating platelets. J Biol Chem 1991; 266: 13289-13295.
  • 63 Nolan S. et al. Nitric oxide regulates neutrophil migration through microparticle formation. Am J Pathol 2008; 172: 265-273.
  • 64 Sebbagh M. et al. Direct cleavage of ROCK II by granzyme B induces target cell membrane blebbing in a caspase-independent manner. J Exp Med 2005; 201: 465-471.
  • 65 Sebbagh M. et al. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 2001; 3: 346-352.
  • 66 Sapet C. et al. Thrombin-induced endothelial microparticle generation: identification of a novel pathway involving ROCK-II activation by caspase-2. Blood 2006; 108: 1868-1876.
  • 67 Tramontano AF. et al. Statin decreases endothelial microparticle release from human coronary artery endothelial cells: implication for the Rho-kinase pathway. Biochem Biophys Res Commun 2004; 320: 34-38.
  • 68 Vion AC. et al. Shear stress regulates endothelial microparticle release. Circ Res 2013; 112: 1323-1333.
  • 69 Midura EF. et al. Impact of caspase-8 and PKA in regulating neutrophil-derived microparticle generation. Biochem Biophys Res Commun 2016; 469: 917-922.
  • 70 Wang T. et al. Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proc Natl Acad Sci USA 2014; 111: E3234-E3242.
  • 71 Muralidharan-Chari V. et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol 2009; 19: 1875-1885.
  • 72 Suzuki J. et al. Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science 2013; 341: 403-406.
  • 73 Zhu L. et al. Label-free quantitative detection of tumor-derived exosomes through surface plasmon resonance imaging. Anal Chem 2014; 86: 8857-8864.
  • 74 Pugholm LH. et al. Antibody-Based Assays for Phenotyping of Extracellular Vesicles. Biomed Res Int 2015; 2015: 524817.
  • 75 van der Pol E. et al. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost 2014; 12: 1182-1192.
  • 76 Lacroix R. et al. Overcoming limitations of microparticle measurement by flow cytometry. Semin Thromb Haemost 2010; 36: 807-818.
  • 77 Lacroix R. et al. Flow cytometry. In: Extracellular vesicles in health and disease Pan Stanford Publishing; 2014: 201-222.
  • 78 Robert S. et al. High-sensitivity flow cytometry provides access to standardized measurement of small-size microparticles--brief report. Arterioscler Thromb Vasc Biol 2012; 32: 1054-1058.
  • 79 Hoen EN. et al. Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomedicine 2011; 8: 712-720.
  • 80 Zhu S. et al. Light-scattering detection below the level of single fluorescent molecules for high-resolution characterisation of functional nanoparticles. ACS Nano 2014; 8: 10998-11006.
  • 81 van der Pol E. et al. Recent developments in the nomenclature, presence, isolation, detection and clinical impact of extracellular vesicles. J Thromb Haemost 2016; 14: 48-56.
  • 82 van der Pol E. et al. Refractive index determination of nanoparticles in suspension using nanoparticle tracking analysis. Nano Lett 2014; 14: 6195-6201.
  • 83 Poncelet P. et al. Tips and tricks for flow cytometry-based analysis and counting of microparticles. Transfus Apher Sci 2015; 53: 110-126.
  • 84 Sodar BW. et al. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Sci Rep 2016; 6: 24316.
  • 85 Amabile N. et al. Circulating immune complexes do not affect microparticle flow cytometry analysis in acute coronary syndrome. Blood 2012; 119: 2174-2175. author reply 2175-2176
  • 86 Dragovic RA. et al. Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine 2011; 7: 780-788.
  • 87 Coumans FA. et al. Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing. J Extracell Vesicles 2014; 3: 25922.
  • 88 Lotvall J. et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 2014; 3: 26913.
  • 89 Poncelet P. et al. Standardized counting of circulating platelet microparticles using currently available flow cytometers and scatter-based triggering: Forward or side scatter?. Cytometry A 2016; 89: 148-158.
  • 90 Nolan JP. Flow Cytometry of Extracellular Vesicles: Potential, Pitfalls, and Prospects. Curr Protoc Cytom 2015; 73: 1341-1346.
  • 91 Yuana Y. et al. Handling and storage of human body fluids for analysis of extracellular vesicles. J Extracell Vesicles 2015; 4: 29260.
  • 92 Boing AN. et al. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles 2014; 3 : doi: 10.3402/jev.v3.23430.
  • 93 Witwer KW. et al. Standardisation of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2013; 2 : doi: 10.3402/jev.v2i0.20360.
  • 94 Lacroix R. et al. Activation of plasminogen into plasmin at the surface of endothelial microparticles: a mechanism that modulates angiogenic properties of endothelial progenitor cells in vitro. Blood 2007; 110: 2432-2439.
  • 95 Raposo G. et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med 1996; 183: 1161-1172.
  • 96 Morel O. et al. Cellular microparticles: a disseminated storage pool of bioactive vascular effectors. Curr Opin Hematol 2004; 11: 156-164.
  • 97 Ratajczak J. et al. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 2006; 20: 1487-1495.
  • 98 Barry OP. et al. Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles. J Clin Invest 1997; 99: 2118-2127.
  • 99 Barry OP. et al. Arachidonic acid in platelet microparticles up-regulates cyclooxygenase-2-dependent prostaglandin formation via a protein kinase C/mitogen-activated protein kinase-dependent pathway. J Biol Chem 1999; 274: 7545-7556.
  • 100 Zomer A. et al. Studying extracellular vesicle transfer by a Cre-loxP method. Nat Protoc 2016; 11: 87-101.
  • 101 Svensson KJ. et al. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem 2013; 288: 17713-17724.
  • 102 Feng D. et al. Cellular internalisation of exosomes occurs through phagocytosis. Traffic 2010; 11: 675-687.
  • 103 Parolini I. et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem 2009; 284: 34211-34222.
  • 104 Kanada M. et al. Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc Natl Acad Sci USA 2015; 112: E1433-E1442.
  • 105 Al Faraj A. et al. Endothelial cell-derived microparticles loaded with iron oxide nanoparticles: feasibility of MR imaging monitoring in mice. Radiology 2012; 263: 169-178.
  • 106 Dasgupta SK. et al. Developmental endothelial locus-1 (Del-1) mediates clearance of platelet microparticles by the endothelium. Circulation 2012; 125: 1664-1672.
  • 107 Willekens FL. et al. Liver Kupffer cells rapidly remove red blood cell-derived vesicles from the circulation by scavenger receptors. Blood 2005; 105: 2141-2145.
  • 108 Jansen F. et al. Endothelial microparticle uptake in target cells is annexin I/phosphatidylserine receptor dependent and prevents apoptosis. Arterioscler Thromb Vasc Biol 2012; 32: 1925-1935.
  • 109 Terrisse AD. et al. Internalisation of microparticles by endothelial cells promotes platelet/endothelial cell interaction under flow. J Thromb Haemost 2010; 8: 2810-2819.
  • 110 Happonen KE. et al. The Gas6-Axl Protein Interaction Mediates Endothelial Uptake of Platelet Microparticles. J Biol Chem 2016; 291: 10586-10601.
  • 111 Faille D. et al. Endocytosis and intracellular processing of platelet microparticles by brain endothelial cells. J Cell Mol Med 2012; 16: 1731-1738.
  • 112 Alexy T. et al. TNF-alpha alters the release and transfer of microparticle-encapsulated miRNAs from endothelial cells. Physiol Genomics 2014; 46: 833-8340.
  • 113 Leroyer AS. et al. CD40 ligand+ microparticles from human atherosclerotic plaques stimulate endothelial proliferation and angiogenesis a potential mechanism for intraplaque neovascularisation. J Am Coll Cardiol 2008; 52: 1302-1311.
  • 114 Barry OP. et al. Modulation of monocyte-endothelial cell interactions by platelet microparticles. J Clin Invest 1998; 102: 136-144.
  • 115 Mause SF. et al. Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscler Thromb Vasc Biol 2005; 25: 1512-1518.
  • 116 Rautou PE. et al. Microparticles from human atherosclerotic plaques promote endothelial ICAM-1-dependent monocyte adhesion and transendothelial migration. Circ Res 2011; 108: 335-343.
  • 117 Ratajczak J. et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 2006; 20: 847-856.
  • 118 Batagov AO, Kurochkin IV. Exosomes secreted by human cells transport largely mRNA fragments that are enriched in the 3’-untranslated regions. Biol Direct 2013; 8: 12.
  • 119 Huang X. et al. Characterisation of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 2013; 14: 319.
  • 120 Mittelbrunn M. et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2011; 2: 282.
  • 121 Zernecke A. et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2009; 2: ra81.
  • 122 Bellingham SA. et al. Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res 2012; 40: 10937-10949.
  • 123 Hunter MP. et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS One 2008; 3: e3694.
  • 124 Valadi H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9: 654-659.
  • 125 Arroyo JD. et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 2011; 108: 5003-5008.
  • 126 Jeppesen DK. et al. Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and nonmetastatic bladder cancer cells reveal differential expression of EMT factors. Proteomics 2014; 14: 699-712.
  • 127 Li L. et al. Argonaute 2 complexes selectively protect the circulating microRNAs in cell-secreted microvesicles. PLoS One 2012; 7: e46957.
  • 128 Melo SA. et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 2014; 26: 707-721.
  • 129 Jansen F. et al. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation 2013; 128: 2026-2038.
  • 130 Caporali A. et al. p75(NTR)-dependent activation of NF-kappaB regulates microRNA-503 transcription and pericyte-endothelial crosstalk in diabetes after limb ischaemia. Nat Commun 2015; 6: 8024.
  • 131 Hergenreider E. et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 2012; 14: 249-256.
  • 132 Finn NA. et al. Coronary heart disease alters intercellular communication by modifying microparticle-mediated microRNA transport. FEBS Lett 2013; 587: 3456-3463.
  • 133 Sabatier F. et al. Circulating endothelial cells, microparticles and progenitors: key players towards the definition of vascular competence. J Cell Mol Med 2009; 13: 454-471.
  • 134 Loyer X. et al. Microvesicles as cell-cell messengers in cardiovascular diseases. Circ Res 2014; 114: 345-353.
  • 135 Cunningham M. et al. Are microparticles the missing link between thrombosis and autoimmune diseases? Involvement in selected rheumatologic diseases. Semin Thromb Haemost 2014; 40: 675-681.
  • 136 Dignat-George F, Boulanger CM. The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol 2011; 31: 27-33.
  • 137 Combes V. et al. In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant. J Clin Invest 1999; 104: 93-102.
  • 138 Thomas GM. et al. Cancer cell-derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo. J Exp Med 2009; 206: 1913-1927.
  • 139 Chahed S. et al. Increased vitreous shedding of microparticles in proliferative diabetic retinopathy stimulates endothelial proliferation. Diabetes 2010; 59: 694-701.
  • 140 Leroyer AS. et al. Cellular origins and thrombogenic activity of microparticles isolated from human atherosclerotic plaques. J Am Coll Cardiol 2007; 49: 772-777.
  • 141 Szotowski B. et al. Antioxidative treatment inhibits the release of thrombogenic tissue factor from irradiation- and cytokine-induced endothelial cells. Cardiovasc Res 2007; 73: 806-812.
  • 142 Brodsky SV. et al. Plasminogen activator inhibitor-1 promotes formation of endothelial microparticles with procoagulant potential. Circulation 2002; 106: 2372-2378.
  • 143 Simak J. et al. Release of annexin V-binding membrane microparticles from cultured human umbilical vein endothelial cells after treatment with camptothecin. BMC Cell Biol 2002; 3: 11.
  • 144 Wang JM. et al. C-Reactive protein-induced endothelial microparticle generation in HUVECs is related to BH4-dependent NO formation. J Vasc Res 2007; 44: 241-248.
  • 145 Faure V. et al. Elevation of circulating endothelial microparticles in patients with chronic renal failure. J Thromb Haemost 2006; 4: 566-573.
  • 146 Nomura S. et al. Activated platelet and oxidized LDL induce endothelial membrane vesiculation: clinical significance of endothelial cell-derived microparticles in patients with type 2 diabetes. Clin Appl Thromb Haemost 2004; 10: 205-215.
  • 147 Jenkins NT. et al. Disturbed blood flow acutely induces activation and apoptosis of the human vascular endothelium. Hypertension 2013; 61: 615-621.
  • 148 Heiss C. et al. Brief secondhand smoke exposure depresses endothelial progenitor cells activity and endothelial function: sustained vascular injury and blunted nitric oxide production. J Am Coll Cardiol 2008; 51: 1760-1771.
  • 149 Simoncini S. et al. TRAIL/Apo2L mediates the release of procoagulant endothelial microparticles induced by thrombin in vitro: a potential mechanism linking inflammation and coagulation. Circ Res 2009; 104: 943-951.
  • 150 Owens AP, 3rd Mackman N. Microparticles in haemostasis and thrombosis. Circ Res 2011; 108: 1284-1297.
  • 151 Kagawa H. et al. Expression of functional tissue factor on small vesicles of lipopolysaccharide-stimulated human vascular endothelial cells. Thromb Res 1998; 91: 297-304.
  • 152 Sabatier F. et al. Interaction of endothelial microparticles with monocytic cells in vitro induces tissue factor-dependent procoagulant activity. Blood 2002; 99: 3962-3970.
  • 153 Abid Hussein MN. et al. Phospholipid composition of in vitro endothelial microparticles and their in vivo thrombogenic properties. Thromb Res 2008; 121: 865-871.
  • 154 Pawlinski R. et al. Hematopoietic and nonhematopoietic cell tissue factor activates the coagulation cascade in endotoxemic mice. Blood 2010; 116: 806-814.
  • 155 Aras O. et al. Induction of microparticle- and cell-associated intravascular tissue factor in human endotoxemia. Blood 2004; 103: 4545-4553.
  • 156 Shet A. et al. Immune response to group A streptococcal C5a peptidase in children: implications for vaccine development. J Infect Dis 2003; 188: 809-817.
  • 157 Mostefai HA. et al. Circulating microparticles from patients with septic shock exert protective role in vascular function. Am J Respir Crit Care Med 2008; 178: 1148-1155.
  • 158 Morel O. et al. Microparticles in endothelial cell and vascular homeostasis: are they really noxious?. Haematologica 2009; 94: 313-317.
  • 159 Curtis AM. et al. p38 mitogen-activated protein kinase targets the production of proinflammatory endothelial microparticles. J Thromb Haemost 2009; 7: 701-709.
  • 160 Chirinos JA. et al. Correlation between apoptotic endothelial microparticles and serum interleukin-6 and C-reactive protein in healthy men. Am J Cardiol 2005; 95: 1258-1260.
  • 161 MacKenzie A. et al. Rapid secretion of interleukin-1beta by microvesicle shedding. Immunity 2001; 15: 825-835.
  • 162 Mezentsev A. et al. Endothelial microparticles affect angiogenesis in vitro: role of oxidative stress. Am J Physiol Heart Circ Physiol 2005; 289: H1106-H1114.
  • 163 Ou ZJ. et al. Endothelium-derived microparticles inhibit angiogenesis in the heart and enhance the inhibitory effects of hypercholesterolemia on angiogenesis. Am J Physiol Endocrinol Metab 2011; 300: E661-E668.
  • 164 Tsimerman G. et al. Involvement of microparticles in diabetic vascular complications. Thromb Haemost 2011; 106: 310-321.
  • 165 Machlus KR, Italiano JE. Jr. The incredible journey: From megakaryocyte development to platelet formation. J Cell Biol 2013; 201: 785-796.
  • 166 Kapur R. et al. Nouvelle cuisine: platelets served with inflammation. J Immunol 2015; 194: 5579-5587.
  • 167 Morrell CN. et al. Emerging roles for platelets as immune and inflammatory cells. Blood 2014; 123: 2759-2767.
  • 168 Varon D, Shai E. Platelets and their microparticles as key players in pathophysiological responses. J Thromb Haemost 2015; 13 (Suppl. 01) S40-S46.
  • 169 Badimon L. et al. Role of Platelet-Derived Microvesicles As Crosstalk Mediators in Atherothrombosis and Future Pharmacology Targets: A Link between Inflammation, Atherosclerosis, and Thrombosis. Front Pharmacol 2016; 7: 293.
  • 170 Landry P. et al. Existence of a microRNA pathway in anucleate platelets. Nat Struct Mol Biol 2009; 16: 961-966.
  • 171 Laffont B. et al. Activated platelets can deliver mRNA regulatory Ago2*microRNA complexes to endothelial cells via microparticles. Blood 2013; 122: 253-261.
  • 172 Pierce GF. et al. Platelet-derived growth factor and transforming growth factor-beta enhance tissue repair activities by unique mechanisms. J Cell Biol 1989; 109: 429-440.
  • 173 Duchez AC. et al. Platelet microparticles are internalized in neutrophils via the concerted activity of 12-lipoxygenase and secreted phospholipase A2-IIA. Proc Natl Acad Sci USA 2015; 112: E3564-E3573.
  • 174 Brown GT, McIntyre TM. Lipopolysaccharide signaling without a nucleus: kinase cascades stimulate platelet shedding of proinflammatory IL-1beta-rich microparticles. J Immunol 2011; 186: 5489-5496.
  • 175 Boilard E. et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 2010; 327: 580-583.
  • 176 Boudreau LH. et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood 2014; 124: 2173-2183.
  • 177 Laffont B. et al. Platelet microparticles reprogram macrophage gene expression and function. Thromb Haemost 2016; 115: 311-323.
  • 178 Escolar G. et al. The fate of the open canalicular system in surface and suspension-activated platelets. Blood 1989; 74: 1983-1988.
  • 179 Tersteeg C. et al. FLow-induced PRotrusions (FLIPRs): a platelet-derived platform for the retrieval of microparticles by monocytes and neutrophils. Circ Res 2014; 114: 780-791.
  • 180 Yano Y. et al. The role of protein phosphorylation and cytoskeletal reorganisation in microparticle formation from the platelet plasma membrane. Biochem J 1994; 299: 303-308.
  • 181 Gitz E. et al. CLEC-2 expression is maintained on activated platelets and on platelet microparticles. Blood 2014; 124: 2262-2270.
  • 182 Boilard E. et al. Platelets: active players in the pathogenesis of arthritis and SLE. Nat Rev Rheumatol 2012; 8: 534-542.
  • 183 Nurmohamed MT. et al. Cardiovascular comorbidity in rheumatic diseases. Nat Rev Rheumatol 2015; 11: 693-704.
  • 184 Sims PJ, Wiedmer T. Repolarisation of the membrane potential of blood platelets after complement damage: evidence for a Ca++ -dependent exocytotic elimination of C5b-9 pores. Blood 1986; 68: 556-561.
  • 185 Hugel B. et al. Elevated levels of circulating procoagulant microparticles in patients with paroxysmal nocturnal haemoglobinuria and aplastic anemia. Blood 1999; 93: 3451-3456.
  • 186 Hill A. et al. Thrombosis in paroxysmal nocturnal haemoglobinuria. Blood 2013; 121: 4985-4996; quiz 5105
  • 187 Suades R. et al. Circulating and platelet-derived microparticles in human blood enhance thrombosis on atherosclerotic plaques. Thromb Haemost 2012; 108: 1208-1219.
  • 188 Willerson JT. et al. Specific platelet mediators and unstable coronary artery lesions. Experimental evidence and potential clinical implications. Circulation 1989; 80: 198-205.
  • 189 Lee YJ. et al. Elevated platelet microparticles in transient ischemic attacks, lacunar infarcts, and multiinfarct dementias. Thromb Res 1993; 72: 295-304.
  • 190 Chiva-Blanch G. et al. Microparticle Shedding from Neural Progenitor Cells and Vascular Compartment Cells Is Increased in Ischemic Stroke. PLoS One 2016; 11: e0148176.
  • 191 Lopes-Virella MF, Virella G. Immune mechanisms of atherosclerosis in diabetes mellitus. Diabetes 1992; 41 (Suppl. 02) 86-91.
  • 192 Mullier F. et al. Platelet microparticle generation assay: a valuable test for immune heparin-induced thrombocytopenia diagnosis. Thromb Res 2014; 133: 1068-1073.
  • 193 Falanga A. et al. Microparticles in tumor progression. Thromb Res 2012; 129 (Suppl. 01) S132-S136.
  • 194 Lim MY. et al. Haemostatic abnormalities in sickle cell disease. Curr Opin Hematol 2013; 20: 472-477.
  • 195 Pattanapanyasat K. et al. Activated platelet-derived microparticles in thalassaemia. Br J Haematol 2007; 136: 462-471.
  • 196 Agouti I. et al. Platelet and not erythrocyte microparticles are procoagulant in transfused thalassaemia major patients. Br J Haematol 2015; 171: 615-624.
  • 197 Franco AT. et al. Platelets at the interface of thrombosis, inflammation, and cancer. Blood 2015; 126: 582-588.
  • 198 Pap E. The role of microvesicles in malignancies. Adv Exp Med Biol 2011; 714: 183-199.
  • 199 Reid VL, Webster NR. Role of microparticles in sepsis. Br J Anaesth 2012; 109: 503-513.
  • 200 Panes O. et al. Human platelets synthesize and express functional tissue factor. Blood 2007; 109: 5242-5250.
  • 201 Schwertz H. et al. Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenicity of human platelets. J Exp Med 2006; 203: 2433-2440.
  • 202 Bouchard BA. et al. No evidence for tissue factor on platelets. Blood 2010; 116: 854-855.
  • 203 Osterud B. The role of platelets in decrypting monocyte tissue factor. Semin Hematol 2001; 38 (04) (Suppl. 012) 2-5.
  • 204 Hrachovinova I. et al. Interaction of P-selectin and PSGL-1 generates microparticles that correct haemostasis in a mouse model of haemophilia A. Nat Med 2003; 9: 1020-1025.
  • 205 Falati S. et al. Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J Exp Med 2003; 197: 1585-1598.
  • 206 Gyorgy B. et al. Improved flow cytometric assessment reveals distinct microvesicle (cell-derived microparticle) signatures in joint diseases. PLoS One 2012; 7: e49726.
  • 207 Milasan A. et al. Extracellular vesicles are present in mouse lymph and their level differs in atherosclerosis. J Extracell Vesicles 2016; 5: 31427.
  • 208 Cloutier N. et al. The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes. EMBO Mol Med 2013; 5: 235-249.
  • 209 Dinkla S. et al. Platelet microparticles inhibit IL-17 production by regulatory T cells through P-selectin. Blood 2016; 127: 1976-1986.
  • 210 Wang T. et al. Regulatory T cells in rheumatoid arthritis showed increased plasticity toward Th17 but retained suppressive function in peripheral blood. Ann Rheum Dis 2015; 74: 1293-1301.
  • 211 Cloutier N. et al. Platelets can enhance vascular permeability. Blood 2012; 120: 1334-1343.
  • 212 Stormorken H. et al. Studies on the haemostatic defect in a complicated syndrome. An inverse Scott syndrome platelet membrane abnormality?. Thromb Haemost 1995; 74: 1244-1251.
  • 213 Misceo D. et al. A dominant STIM1 mutation causes Stormorken syndrome. Hum Mutat 2014; 35: 556-564.
  • 214 Nesin V. et al. Activating mutations in STIM1 and ORAI1 cause overlapping syndromes of tubular myopathy and congenital miosis. Proc Natl Acad Sci USA 2014; 111: 4197-4202.
  • 215 Freyssinet JM. Cellular microparticles: what are they bad or good for?. J Thromb Haemost 2003; 1: 1655-1662.
  • 216 Kim HK. et al. Platelet microparticles induce angiogenesis in vitro. Br J Haematol 2004; 124: 376-384.
  • 217 Aatonen M. et al. Platelet-derived microvesicles: multitalented participants in intercellular communication. Semin Thromb Haemost 2012; 38: 102-113.
  • 218 Pluskota E. et al. Expression, activation, and function of integrin alphaMbeta2 (Mac-1) on neutrophil-derived microparticles. Blood 2008; 112: 2327-2335.
  • 219 Wang JG. et al. Monocytic microparticles activate endothelial cells in an IL-1beta-dependent manner. Blood 2011; 118: 2366-2374.
  • 220 Liu ML. et al. Cholesterol enrichment of human monocyte/macrophages induces surface exposure of phosphatidylserine and the release of biologically-active tissue factor-positive microvesicles. Arterioscler Thromb Vasc Biol 2007; 27: 430-435.
  • 221 Timar CI. et al. Antibacterial effect of microvesicles released from human neutrophilic granulocytes. Blood 2013; 121: 510-518.
  • 222 Sarkar A. et al. Monocyte derived microvesicles deliver a cell death message via encapsulated caspase-1. PLoS One 2009; 4: e7140.
  • 223 Szczepanski MJ. et al. Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-beta1. Haematologica 2011; 96: 1302-1309.
  • 224 Benameur T. et al. Plasma cells release membrane microparticles in a mouse model of multiple myeloma. Micron 2013; 54-55-75-81.
  • 225 Domnikova NP. et al. Blood microvesicles during chronic lymphoproliferative diseases. Bull Exp Biol Med 2013; 156: 94-97.
  • 226 Fujimi S. et al. Increased production of leukocyte microparticles with enhanced expression of adhesion molecules from activated polymorphonuclear leukocytes in severely injured patients. J Trauma 2003; 54: 114-120.
  • 227 Nieuwland R. et al. Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood 2000; 95: 930-935.
  • 228 Fujimi S. et al. Activated polymorphonuclear leukocytes enhance production of leukocyte microparticles with increased adhesion molecules in patients with sepsis. J Trauma 2002; 52: 443-448.
  • 229 Dalli J. et al. Heterogeneity in neutrophil microparticles reveals distinct proteome and functional properties. Mol Cell Proteomics 2013; 12: 2205-2219.
  • 230 Lorincz AM. et al. Functionally and morphologically distinct populations of extracellular vesicles produced by human neutrophilic granulocytes. J Leukoc Biol 2015; 98: 583-589.
  • 231 Feske S. Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol 2007; 7: 690-702.
  • 232 Bartels K. et al. Hypoxia and inflammation are two sides of the same coin. Proc Natl Acad Sci USA 2013; 110: 18351-18352.
  • 233 Bucki R. et al. Calcium induces phospholipid redistribution and microvesicle release in human erythrocyte membranes by independent pathways. Biochemistry 1998; 37: 15383-15391.
  • 234 Pasquet JM. et al. Calcium influx is a determining factor of calpain activation and microparticle formation in platelets. Eur J Biochem 1996; 239: 647-654.
  • 235 VanWijk MJ. et al. Microparticle subpopulations are increased in preeclampsia: possible involvement in vascular dysfunction?. Am J Obstet Gynecol 2002; 187: 450-456.
  • 236 Szabo GT. et al. Critical role of extracellular vesicles in modulating the cellular effects of cytokines. Cell Mol Life Sci 2014; 71: 4055-4067.
  • 237 Vince RV. et al. Hypoxia mediated release of endothelial microparticles and increased association of S100A12 with circulating neutrophils. Oxid Med Cell Longev 2009; 2: 2-6.
  • 238 Suades R. et al. The Role of Blood-Borne Microparticles in Inflammation and Haemostasis. Semin Thromb Haemost 2015; 41: 590-606.
  • 239 Osteikoetxea X. et al. Extracellular vesicles in cardiovascular disease: are they Jedi or Sith?. J Physiol 2016; 594: 2881-2894.
  • 240 Jungel A. et al. Microparticles stimulate the synthesis of prostaglandin E(2) via induction of cyclooxygenase 2 and microsomal prostaglandin E synthase 1. Arthritis Rheum 2007; 56: 3564-3574.
  • 241 Buzas EI. et al. Emerging role of extracellular vesicles in inflammatory diseases. Nat Rev Rheumatol 2014; 10: 356-364.
  • 242 Meziani F. et al. Shed membrane particles from preeclamptic women generate vascular wall inflammation and blunt vascular contractility. Am J Pathol 2006; 169: 1473-1483.
  • 243 Mortaza S. et al. Detrimental haemodynamic and inflammatory effects of microparticles originating from septic rats. Crit Care Med 2009; 37: 2045-2050.
  • 244 Gasser O, Schifferli JA. Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood 2004; 104: 2543-2548.
  • 245 Eken C. et al. Polymorphonuclear neutrophil-derived ectosomes interfere with the maturation of monocyte-derived dendritic cells. J Immunol 2008; 180: 817-824.
  • 246 Sadallah S. et al. Microparticles (ectosomes) shed by stored human platelets downregulate macrophages and modify the development of dendritic cells. J Immunol 2011; 186: 6543-6552.
  • 247 Mostefai HA. et al. Interleukin-10 controls the protective effects of circulating microparticles from patients with septic shock on tissue-engineered vascular media. Clin Sci 2013; 125: 77-85.
  • 248 Turbica I. et al. Ectosomes from neutrophil-like cells down-regulate nickel-induced dendritic cell maturation and promote Th2 polarisation. J Leukoc Biol 2015; 97: 737-749.
  • 249 Suades R. et al. Circulating CD45+/CD3+ lymphocyte-derived microparticles map lipid-rich atherosclerotic plaques in familial hypercholesterolaemia patients. Thromb Haemost 2014; 111: 111-121.
  • 250 Sarlon-Bartoli G. et al. Plasmatic level of leukocyte-derived microparticles is associated with unstable plaque in asymptomatic patients with high-grade carotid stenosis. J Am Coll Cardiol 2013; 62: 1436-1441.
  • 251 Chiva-Blanch G. et al. Monocyte-derived circulating microparticles (CD14+, CD14+/CD11b+ and CD14+/CD142+) are related to long-term prognosis for cardiovascular mortality in STEMI patients. Int J Cardiol 2017; 227: 876-881.
  • 252 Chiva-Blanch G. et al. CD3(+)/CD45(+) and SMA-alpha(+) circulating microparticles are increased in individuals at high cardiovascular risk who will develop a major cardiovascular event. Int J Cardiol 2016; 208: 147-149.
  • 253 Chironi G. et al. Circulating leukocyte-derived microparticles predict subclinical atherosclerosis burden in asymptomatic subjects. Arterioscler Thromb Vasc Biol 2006; 26: 2775-2780.
  • 254 Gyorgy B. et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 2011; 68: 2667-2688.
  • 255 Bjorkerud S, Bjorkerud B. Apoptosis is abundant in human atherosclerotic lesions, especially in inflammatory cells (macrophages and T cells), and may contribute to the accumulation of gruel and plaque instability. Am J Pathol 1996; 149: 367-380.
  • 256 Mallat Z. et al. Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenicity. Circulation 1999; 99: 348-353.
  • 257 Martin S. et al. Shed membrane particles from T lymphocytes impair endothelial function and regulate endothelial protein expression. Circulation 2004; 109: 1653-1659.
  • 258 Yang C. et al. Lymphocytic microparticles inhibit angiogenesis by stimulating oxidative stress and negatively regulating VEGF-induced pathways. Am J Physiol Regul Integr Comp Physiol 2008; 294: R467-R476.
  • 259 Yang C. et al. Low density lipoprotein receptor mediates anti-VEGF effect of lymphocyte T-derived microparticles in Lewis lung carcinoma cells. Cancer Biol Ther 2010; 10: 448-456.
  • 260 Miguet L. et al. Proteomic analysis of malignant B-cell derived microparticles reveals CD148 as a potentially useful antigenic biomarker for mantle cell lymphoma diagnosis. J Proteome Res 2009; 8: 3346-3354.
  • 261 Di Noto G. et al. C-src enriched serum microvesicles are generated in malignant plasma cell dyscrasia. PLoS One 2013; 8: e70811.
  • 262 Zinger A. et al. Plasma levels of endothelial and B-cell-derived microparticles are restored by fingolimod treatment in multiple sclerosis patients. Mult Scler 2016; 22: 1883-1887.
  • 263 Allan D. et al. Release of spectrin-free spicules on reoxygenation of sickled erythrocytes. Nature 1982; 295: 612-613.
  • 264 Allan D. et al. Microvesiculation and sphingomyelinase activation in chicken erythrocytes treated with ionophore A23187 and Ca2+. Biochim Biophys Acta 1982; 693: 53-67.
  • 265 Wagner GM. et al. Red cell vesiculation--a common membrane physiologic event. J Lab Clin Med 1986; 108: 315-324.
  • 266 Whitlow M. et al. Cells lacking glycan phosphatidylinositol-linked proteins have impaired ability to vesiculate. Blood 1993; 81: 510-516.
  • 267 Hagerstrand H. et al. Vesiculation induced by amphiphiles and ionophore A23187 in porcine platelets: a transmission electron microscopic study. Chem Biol Interact 1996; 101: 115-126.
  • 268 Hagerstrand H. et al. Membrane skeleton detachment in spherical and cylindrical microexovesicles. Bull Math Biol 1999; 61: 1019-1030.
  • 269 Bratosin D. et al. Programmed cell death in mature erythrocytes: a model for investigating death effector pathways operating in the absence of mitochondria. Cell Death Differ 2001; 8: 1143-1156.
  • 270 Iglic A. et al. Spherocyte shape transformation and release of tubular nanovesicles in human erythrocytes. Bioelectrochemistry 2004; 62: 159-161.
  • 271 Greenwalt TJ. The how and why of exocytic vesicles. Transfusion 2006; 46: 143-152.
  • 272 Giannopoulos G. et al. Red blood cell and platelet microparticles in myocardial infarction patients treated with primary angioplasty. Int J Cardiol 2014; 176: 145-150.
  • 273 Suades R. et al. Growing thrombi release increased levels of CD235a(+) microparticles and decreased levels of activated platelet-derived microparticles. Validation in ST-elevation myocardial infarction patients. J Thromb Haemost 2015; 13: 1776-1786.
  • 274 Setty BN. et al. Fetal haemoglobin in sickle cell disease: relationship to erythrocyte phosphatidylserine exposure and coagulation activation. Blood 2000; 96: 1119-1124.
  • 275 van Tits LJ. et al. Plasma annexin A5 and microparticle phosphatidylserine levels are elevated in sickle cell disease and increase further during painful crisis. Biochem Biophys Res Commun 2009; 390: 161-164.
  • 276 Mahfoudhi E. et al. Red cells exchanges in sickle cells disease lead to a selective reduction of erythrocytes-derived blood microparticles. Br J Haematol 2012; 156: 545-547.
  • 277 Tantawy AA. et al. Circulating platelet and erythrocyte microparticles in young children and adolescents with sickle cell disease: Relation to cardiovascular complications. Platelets 2013; 24: 605-614.
  • 278 Pattanapanyasat K. et al. Flow cytometric quantitation of red blood cell vesicles in thalassemia. Cytometry B Clin Cytom 2004; 57: 23-31.
  • 279 Westerman M. et al. Microvesicles in haemoglobinopathies offer insights into mechanisms of hypercoagulability, haemolysis and the effects of therapy. Br J Haematol 2008; 142: 126-135.
  • 280 Oswald E. et al. Intraoperatively salvaged red blood cells contain nearly no functionally active platelets, but exhibit formation of microparticles: results of a pilot study in orthopedic patients. Transfusion 2010; 50: 400-406.
  • 281 Donadee C. et al. Nitric oxide scavenging by red blood cell microparticles and cell-free haemoglobin as a mechanism for the red cell storage lesion. Circulation 2011; 124: 465-476.
  • 282 Hendrickson JE. et al. Transfusion of fresh murine red blood cells reverses adverse effects of older stored red blood cells. Transfusion 2011; 51: 2695-2702.
  • 283 Liu C. et al. Nitric oxide scavenging by red cell microparticles. Free Radic Biol Med 2013; 65: 1164-1173.
  • 284 Griffiths RE. et al. Maturing reticulocytes internalize plasma membrane in glycophorin A-containing vesicles that fuse with autophagosomes before exocytosis. Blood 2012; 119: 6296-6306.
  • 285 Taraschi TF. et al. Vesicle-mediated trafficking of parasite proteins to the host cell cytosol and erythrocyte surface membrane in Plasmodium falciparum infected erythrocytes. Int J Parasitol 2001; 31: 1381-1391.
  • 286 van Beers EJ. et al. Circulating erythrocyte-derived microparticles are associated with coagulation activation in sickle cell disease. Haematologica 2009; 94: 1513-1519.
  • 287 Gerotziafas GT. et al. The acceleration of the propagation phase of thrombin generation in patients with steady-state sickle cell disease is associated with circulating erythrocyte-derived microparticles. Thromb Haemost 2012; 107: 1044-1052.
  • 288 Koshiar RL. et al. Erythrocyte-derived microparticles supporting activated protein C-mediated regulation of blood coagulation. PLoS One 2014; 9: e104200.
  • 289 Zecher D. et al. Erythrocyte-derived microvesicles amplify systemic inflammation by thrombin-dependent activation of complement. Arterioscler Thromb Vasc Biol 2014; 34: 313-320.
  • 290 Blum A. The possible role of red blood cell microvesicles in atherosclerosis. Eur J Intern Med 2009; 20: 101-105.
  • 291 Camus SM. et al. Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease. Blood 2015; 125: 3805-3814.
  • 292 Camus SM. et al. Erythrocyte microparticles can induce kidney vaso-occlusions in a murine model of sickle cell disease. Blood 2012; 120: 5050-5058.
  • 293 Nouraie M. et al. The relationship between the severity of haemolysis, clinical manifestations and risk of death in 415 patients with sickle cell anemia in the US and Europe. Haematologica 2013; 98: 464-472.
  • 294 Forest A. et al. Circulating microparticles and procoagulant activity in elderly patients. J Gerontol A Biol Sci Med Sci 2010; 65: 414-420.
  • 295 Owen BA. et al. Procoagulant activity, but not number, of microparticles increases with age and in individuals after a single venous thromboembolism. Thromb Res 2011; 127: 39-46.
  • 296 Toth B. et al. Gender-specific and menstrual cycle dependent differences in circulating microparticles. Platelets 2007; 18: 515-521.
  • 297 Preston RA. et al. Effects of severe hypertension on endothelial and platelet microparticles. Hypertension 2003; 41: 211-217.
  • 298 Amabile N. et al. Association of circulating endothelial microparticles with cardiometabolic risk factors in the Framingham Heart Study. Eur Heart J 2014; 35: 2972-2979.
  • 299 Suades R. et al. High levels of TSP1+/CD142+ platelet-derived microparticles characterise young patients with high cardiovascular risk and subclinical atherosclerosis. Thromb Haemost 2015; 114: 1310-1321.
  • 300 Ferreira AC. et al. Postprandial hypertriglyceridemia increases circulating levels of endothelial cell microparticles. Circulation 2004; 110: 3599-3603.
  • 301 Gordon C. et al. Circulating endothelial microparticles as a measure of early lung destruction in cigarette smokers. Am J Respir Crit Care Med 2011; 184: 224-232.
  • 302 Mobarrez F. et al. The effects of smoking on levels of endothelial progenitor cells and microparticles in the blood of healthy volunteers. PLoS One 2014; 9: e90314.
  • 303 Pope CA. 3rd et al. Exposure to Fine Particulate Air Pollution Is Associated With Endothelial Injury and Systemic Inflammation. Circ Res 2016; 119: 1204-1214.
  • 304 Esposito K. et al. Endothelial microparticles correlate with endothelial dysfunction in obese women. J Clin Endocrinol Metab 2006; 91: 3676-3679.
  • 305 Stepanian A. et al. Microparticle increase in severe obesity: not related to metabolic syndrome and unchanged after massive weight loss. Obesity 2013; 21: 2236-2243.
  • 306 Gunduz Z. et al. Increased endothelial microparticles in obese and overweight children. J Pediatr Endocrinol Metab 2012; 25: 1111-1117.
  • 307 Csongradi E. et al. Increased levels of platelet activation markers are positively associated with carotid wall thickness and other atherosclerotic risk factors in obese patients. Thromb Haemost 2011; 106: 683-692.
  • 308 Diamant M. et al. Elevated numbers of tissue-factor exposing microparticles correlate with components of the metabolic syndrome in uncomplicated type 2 diabetes mellitus. Circulation 2002; 106: 2442-2447.
  • 309 Sabatier F. et al. Type 1 and type 2 diabetic patients display different patterns of cellular microparticles. Diabetes 2002; 51: 2840-2845.
  • 310 Koga H. et al. Elevated levels of VE-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease. J Am Coll Cardiol 2005; 45: 1622-1630.
  • 311 Arteaga RB. et al. Endothelial microparticles and platelet and leukocyte activation in patients with the metabolic syndrome. Am J Cardiol 2006; 98: 70-74.
  • 312 Navasiolava NM. et al. Enforced physical inactivity increases endothelial microparticle levels in healthy volunteers. Am J Physiol Heart Circ Physiol 2010; 299: H248-256.
  • 313 Miller VM. et al. Specific cell-derived microvesicles: Linking endothelial function to carotid artery intima-media thickness in low cardiovascular risk menopausal women. Atherosclerosis 2016; 246: 21-28.
  • 314 Jayachandran M. et al. Characterisation of blood borne microparticles as markers of premature coronary calcification in newly menopausal women. Am J Physiol Heart Circ Physiol 2008; 295: H931-H938.
  • 315 Mallat Z. et al. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation 2000; 101: 841-843.
  • 316 Bernal-Mizrachi L. et al. High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am Heart J 2003; 145: 962-970.
  • 317 Morel O. et al. Circulating procoagulant microparticles and soluble GPV in myocardial infarction treated by primary percutaneous transluminal coronary angioplasty. A possible role for GPIIb-IIIa antagonists. J Thromb Haemost 2004; 2: 1118-1126.
  • 318 Matsumoto N. et al. Increased level of oxidized LDL-dependent monocyte-derived microparticles in acute coronary syndrome. Thromb Haemost 2004; 91: 146-154.
  • 319 Katopodis JN. et al. Platelet microparticles and calcium homeostasis in acute coronary ischemias. Am J Hematol 1997; 54: 95-101.
  • 320 Tan KT. et al. Elevated platelet microparticles in stable coronary artery disease are unrelated to disease severity or to indices of inflammation. Platelets 2005; 16: 368-371.
  • 321 Empana JP. et al. Microparticles and sudden cardiac death due to coronary occlusion. The TIDE (Thrombus and Inflammation in sudden DEath) study. Eur Heart J Acute Cardiovasc Care 2015; 4: 28-36.
  • 322 Simak J. et al. Circulating endothelial microparticles in acute ischemic stroke: a link to severity, lesion volume and outcome. J Thromb Haemost 2006; 4: 1296-1302.
  • 323 Kuriyama N. et al. Evaluation of factors associated with elevated levels of platelet-derived microparticles in the acute phase of cerebral infarction. Clin Appl Thromb Haemost 2010; 16: 26-32.
  • 324 Williams JB. et al. Endothelial microparticle levels are similar in acute ischemic stroke and stroke mimics due to activation and not apoptosis/necrosis. Acad Emerg Med 2007; 14: 685-690.
  • 325 Jung KH. et al. Circulating endothelial microparticles as a marker of cerebrovascular disease. Ann Neurol 2009; 66: 191-199.
  • 326 Tan KT. et al. Platelet microparticles and soluble P selectin in peripheral artery disease: relationship to extent of disease and platelet activation markers. Ann Med 2005; 37: 61-66.
  • 327 Nomura S. et al. Platelet-derived microparticles in patients with arteriosclerosis obliterans: enhancement of high shear-induced microparticle generation by cytokines. Thromb Res 2000; 98: 257-268.
  • 328 van der Zee PM. et al. P-selectin- and CD63-exposing platelet microparticles reflect platelet activation in peripheral arterial disease and myocardial infarction. Clin Chem 2006; 52: 657-664.
  • 329 Dursun I. et al. The relationship between circulating endothelial microparticles and arterial stiffness and atherosclerosis in children with chronic kidney disease. Nephrol Dial Transplant 2009; 24: 2511-2518.
  • 330 Amabile N. et al. Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure. J Am Soc Nephrol 2005; 16: 3381-3388.