Thromb Haemost 2016; 116(04): 597-604
DOI: 10.1160/TH16-01-0036
Theme Issue Article
Schattauer GmbH

The VWF-GPIb axis in ischaemic stroke: lessons from animal models

Frederik Denorme
1   Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
,
Simon F. De Meyer
1   Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
› Author Affiliations
Financial support: This work was supported by the Fonds voor Wetenschappelijk Onderzoek Vlaanderen, FWO G.0A86.13 and 1509216N (to S. F. D.M) and by an ‘Onderzoekstoelage’ grant from KU Leuven (OT/14/099 to S. F. D.M).
Further Information

Publication History

Received: 14 January 2016

Accepted after minor revision: 18 March 2016

Publication Date:
20 November 2017 (online)

Summary

Stroke is a leading cause of death and long-term disability worldwide. Ischaemic stroke is caused by a blood clot that obstructs cerebral blood flow. Current treatment mainly consists of achieving fast reperfusion, either via pharmacological thrombolysis using tissue plasminogen activator or via endovascular thrombectomy. Unfortunately, reperfusion therapy is only available to a limited group of patients and reperfusion injury can further aggravate brain damage. Hence, there is an urgent need for better understanding of ischaemic stroke pathophysiology in order to develop novel therapeutic strategies. In recent years, the pathophysiological importance of von Willebrand factor (VWF) in ischaemic stroke has become clear from both clinical and experimental studies. In particular, binding of VWF to platelet glycoprotein Ib (GPIb) has become an interesting target for ischaemic stroke therapy. Recent insights show that inhibting the VWF-GPIb interaction could result in a pro-thrombolytic activity improving cerebral reperfusion rates and concurrently reducing cerebral ischaemia/reperfusion damage. This review gives an overview of the experimental evidence that illustrates the crucial role of the VWF-GPIb axis in ischaemic stroke.

 
  • References

  • 1 Mozaffarian D. et al. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation 2015; 131: e29-322.
  • 2 Fransen PSS. et al. Time to Reperfusion and Treatment Effect for Acute Ischaemic Stroke: A Randomized Clinical Trial. J Am Med Assoc Neurol 2015; 1-7.
  • 3 Schwamm LH. et al. Temporal Trends in Patient Characteristics and Treatment With Intravenous Thrombolysis Among Acute Ischaemic Stroke Patients at Get With the Guidelines-Stroke Hospitals. Circ Cardiovasc Qual Outcomes 2013; 06: 543-549.
  • 4 Menon BK. et al. Trends in endovascular therapy and clinical outcomes within the nationwide Get With The Guidelines-Stroke registry. Stroke 2015; 46: 989-995.
  • 5 Emberson J. et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet 2014; 384: 1929-1935.
  • 6 Rha J-H, Saver JL. The impact of recanalisation on ischaemic stroke outcome: a meta-analysis Stroke 2007; 38: 967-973.
  • 7 Friedrich B. et al. Distance to thrombus in acute middle cerebral artery occlusion: a predictor of outcome after intravenous thrombolysis for acute ischaemic stroke. Stroke 2015; 46: 692-6.
  • 8 Riedel CH. et al. The importance of size: successful recanalisation by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke 2011; 42: 1775-1777.
  • 9 Jang IK. et al. Differential sensitivity of erythrocyte-rich and platelet-rich arterial thrombi to lysis with recombinant tissue-type plasminogen activator. A possible explanation for resistance to coronary thrombolysis. Circulation 1989; 79: 920-928.
  • 10 Eltzschig HK, Eckle T.. Ischaemia and reperfusion–from mechanism to translation. Nat Med 2011; 17: 1391-1401.
  • 11 Kidwell CS, Saver JL, Starkman S. et al. Late secondary ischaemic injury in patients receiving intraarterial thrombolysis. Ann Neurol 2002; 52: 698-703.
  • 12 De Meyer SF. et al Thrombo-inflammation in stroke brain damage. Stroke 2016; 1-28.
  • 13 De Meyer SF, Stoll G, Kleinschnitz C. von Willebrand factor: an emerging target in stroke therapy. Stroke 2012; 43: 599-606.
  • 14 De Meyer SF. et al Von Willebrand factor: drug and drug target. Cardiovasc Hematol Disord Drug Targets 2009; 09: 9-20.
  • 15 Gresele P, Momi S.. Inhibitors of the interaction between von Willebrand factor and platelet GPIb/IX/V. Handb Exp Pharmacol 2012; 210: 287-309.
  • 16 Longa EZ. et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989; 20: 84-91.
  • 17 Hara H. et al. Reduced brain edema and infarction volume in mice lacking the neuronal isoform of nitric oxide synthase after transient MCA occlusion. J Cerebral Blood Flow Metabol 1996; 16: 605-611.
  • 18 Hossmann K-A. Cerebral ischaemia: Models, methods and outcomes. Neuropharmacology 2008; 55: 257-270.
  • 19 Manning NW. et al. Acute ischaemic stroke: time, penumbra, and reperfusion. Stroke 2014; 45: 640-644.
  • 20 Zhang H. et al. Wide genetic variation in the native pial collateral circulation is a major determinant of variation in severity of stroke. J Cerebral Blood Flow Metabol 2010; 30: 923-934.
  • 21 Brott T. et al. Measurements of acute cerebral infarction: lesion size by computed tomography. Stroke 1989; 20: 871-875.
  • 22 Jovin TG. et al. Thrombectomy within 8 hours after symptom onset in ischaemic stroke. N Engl J Med 2015; 372: 2296-2306.
  • 23 Saver JL. et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med 2015; 372: 2285-2295.
  • 24 Campbell BCV. et al. Endovascular therapy for ischaemic stroke with perfusion-imaging selection. N Engl J Med 2015; 372: 1009-1018.
  • 25 Goyal M. et al. Randomized assessment of rapid endovascular treatment of ischaemic stroke. N Engl J Med 2015; 372: 1019-1030.
  • 26 Berkhemer OA. et al. A randomized trial of intraarterial treatment for acute ischaemic stroke. N Engl J Med 2015; 372: 11-20.
  • 27 Busch E. et al. Improved model of thromboembolic stroke and rt-PA induced reperfusion in the rat. Brain Res 1997; 778: 16-24.
  • 28 Zhang Z. et al. A Mouse Model of Embolic Focal Cerebral Ischaemia. J Cerebral Blood Flow Metabol 1997; 17: 1081-1088.
  • 29 Lapchak PA. et al. Metalloproteinase inhibition reduces thrombolytic (tissue plasminogen activator)-induced haemorrhage after thromboembolic stroke. Stroke 2000; 31: 3034-3040.
  • 30 Kito G, Nishimura A, Susumu T. et al. Experimental thromboembolic stroke in cynomolgus monkey. J Neurosci Methods 2001; 105: 45-53.
  • 31 Watson BD. et al. Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol 1985; 17: 497-504.
  • 32 Rauova L.. 'Radical’ model of thrombosis. Blood Am Soc Hematol 2012; 119: 1798-1799.
  • 33 Grome JJ. et al. Quantitation of photochemically induced focal cerebral ischaemia in the rat. J Cerebral Blood Flow Metabol 1988; 08: 89-95.
  • 34 Laursen H. et al. Cerebrovascular permeability and brain edema after cortical photochemical infarcts in the rat. Acta Neuropathol 1993; 86: 378-385.
  • 35 Orset C. et al. Mouse Model of In Situ Thromboembolic Stroke and Reperfusion. Stroke 2007; 38: 2771-2778.
  • 36 Amki El M, Lerouet D, Coqueran B. et al Experimental modeling of recombinant tissue plasminogen activator effects after ischaemic stroke. Exp Neurol 2012; 238: 138-144.
  • 37 Garcia-Yebenes I. et al A Mouse Model of Haemorrhagic Transformation by Delayed Tissue Plasminogen Activator Administration After In Situ Thromboembolic Stroke. Stroke 2010; 42: 196-203.
  • 38 Hill MD, Coutts SB.. Alteplase in acute ischaemic stroke: the need for speed. Lancet 2014; 1-2.
  • 39 Ansar S. et al. Characterisation of a New Model of Thromboembolic Stroke in C57 black/6J mice. Transl Stroke Res 2013; 05: 526-533.
  • 40 Karatas H. et al. Thrombotic distal middle cerebral artery occlusion produced by topical FeC13 application: a novel model suitable for intravital microscopy and thrombolysis studies. J Cerebral Blood Flow Metabol 2011; 31: 1452-1460.
  • 41 Ciciliano JC. et al. Resolving the multifaceted mechanisms of the ferric chloride thrombosis model using an interdisciplinary microfluidic approach. Blood 2015; 126: 817-824.
  • 42 Le Behot A. et al GpIb-VWF blockade restores vessel patency by dissolving platelet aggregates formed under very high shear rate in mice. Blood 2014; 123: 3354-3363.
  • 43 Denorme F. et al. ADAMTS13-mediated thrombolysis of t-PA resistant occlusions in ischaemic stroke in mice. Blood. 2016 Epub ahead of print.
  • 44 De Meyer SF. et al von Willebrand factor to the rescue. Blood 2009; 113: 5049-5057.
  • 45 Ruggeri ZM. et al. Activation-independent platelet adhesion and aggregation under elevated shear stress. Blood 2006; 108: 1903-1910.
  • 46 Levy GG. et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 2001; 413: 488-494.
  • 47 Petri B. et al. von Willebrand factor promotes leukocyte extravasation. Blood 2010; 116: 4712-4719.
  • 48 Bernardo A. et al. Platelets adhered to endothelial cell-bound ultra-large von Willebrand factor strings support leukocyte tethering and rolling under high shear stress. J Thromb Haemost 2005; 03: 562-570.
  • 49 Pendu R. et al. P-selectin glycoprotein ligand 1 and β2-integrins cooperate in the adhesion of leukocytes to von Willebrand factor. Blood 2006; 108: 3746-3752.
  • 50 Gandhi C. et al. ADAMTS13 deficiency exacerbates VWF-dependent acute myocardial ischaemia/reperfusion injury in mice. Blood 2012; 120: 5224-5230.
  • 51 Kleinschnitz C. et al. Targeting platelets in acute experimental stroke: impact of glycoprotein Ib, VI, and IIb/IIIa blockade on infarct size, functional outcome, and intracranial bleeding. Circulation 2007; 115: 2323-2330.
  • 52 De Meyer SF. et al Platelet glycoprotein Ibα is an important mediator of ischaemic stroke in mice. Exp Transl Stroke Med 2011; 03: 9.
  • 53 Stegner D. et al. Pharmacological Inhibition of Phospholipase D Protects Mice From Occlusive Thrombus Formation and Ischaemic Stroke--Brief Report. Arterioscl Thromb Vasc Biol 2013; 33: 2212-2217.
  • 54 Thielmann I. et al. Redundant functions of phospholipases D1 and D2 in platelet α-granule release. J Thromb Haemost 2012; 10: 2361-2372.
  • 55 Kleinschnitz C. et al. Deficiency of von Willebrand factor protects mice from ischaemic stroke. Blood 2009; 113: 3600-3603.
  • 56 Zhao BQ. et al. von Willebrand factor-cleaving protease ADAMTS13 reduces ischaemic brain injury in experimental stroke. Blood 2009; 114: 3329-3334.
  • 57 De Meyer SF. et al Binding of von Willebrand factor to collagen and glycoprotein Ibalpha, but not to glycoprotein IIb/IIIa, contributes to ischaemic stroke in mice--brief report. Arterioscl Thromb Vasc Biol 2010; 30: 1949-1951.
  • 58 Verhenne S. et al. Platelet-derived VWF is not essential for normal thrombosis and haemostasis but fosters ischaemic stroke injury in mice. Blood 2015; 126: 1715-1722.
  • 59 Fujioka M. et al. ADAMTS13 gene deletion aggravates ischaemic brain damage: a possible neuroprotective role of ADAMTS13 by ameliorating postischaemic hypoperfusion. Blood 2010; 115: 1650-1653.
  • 60 Khan MM. et al. ADAMTS13 reduces VWF-mediated acute inflammation following focal cerebral ischaemia in mice. J Thromb Haemost 2012; 10: 1665-1671.
  • 61 Wang L. et al. Recombinant ADAMTS13 reduces tissue plasminogen activator-induced haemorrhage after stroke in mice. Ann Neurol 2012; 73: 189-198.
  • 62 Li T-T. et al A novel snake venom-derived GPIb antagonist, anfibatide, protects mice from acute experimental ischaemic stroke and reperfusion injury. Br J Pharmacol 2015; 172: 3904-3916.
  • 63 Nieswandt B. et al. Ischaemic stroke: a thrombo-inflammatory disease?. J Physiol 2011; 589: 4115-4123.
  • 64 Prabhakaran S. et al. Acute Stroke Intervention: A Systematic Review. J Am Med Assoc 2015; 313: 1451-1462.
  • 65 Nieswandt B, Stoll G.. (Dis) solving the stroke problem by vWF inhibition?. Blood 2013; 128: 4972-4974.
  • 66 Lapchak PA. et al. Synergistic Effect of AJW200, a von Willebrand Factor Neutralizing Antibody with Low Dose (0.9 mg/mg) Thrombolytic Therapy Following Embolic Stroke in Rabbits. J Neurol Neurophysiol 2013; 04 DOI: doi: 10.4172/2155–9562.1000146.
  • 67 Momi S. et al. Reperfusion of cerebral artery thrombosis by the GPIb-VWF blockade with the Nanobody ALX-0081 reduces brain infarct size in guinea pigs. Blood 2013; 121: 5088-5097.
  • 68 Fisher M. et al. Update of the stroke therapy academic industry roundtable pre-clinical recommendations. Stroke 2009; 40: 2244-2250.
  • 69 Kraft P. et al. Efficacy and Safety of Platelet Glycoprotein Receptor Blockade in Aged and Comorbid Mice With Acute Experimental Stroke. Stroke 2015; 46: 3502-3506.
  • 70 Kleinschnitz C. et al. Targeting platelets in acute experimental stroke: impact of glycoprotein Ib, VI, and IIb/IIIa blockade on infarct size, functional outcome, and intracranial bleeding. Circulation 2007; 115: 2323-2330.
  • 71 Adams HP. et al. Emergency administration of abciximab for treatment of patients with acute ischaemic stroke: results of an international phase III trial: Abciximab in Emergency Treatment of Stroke Trial (AbESTT-II). Stroke 2008; 39: 87-99.
  • 72 Kellert L. et al. Endovascular stroke therapy: tirofiban is associated with risk of fatal intracerebral haemorrhage and poor outcome. Stroke 2013; 44: 1453-1455.
  • 73 Siebler M. et al. Safety of Tirofiban in Acute Ischaemic Stroke: The SaTIS Trial. Stroke 2011; 42: 2388-2392.
  • 74 Wieberdink RG. et al. High von Willebrand factor levels increase the risk of stroke: the Rotterdam study. Stroke 2010; 41: 2151-2156.
  • 75 Sonneveld MAH. et al. Low ADAMTS13 activity is associated with an increased risk of ischaemic stroke. Blood 2015; 126: 2739-2746.
  • 76 Sonneveld MAH. et al. Von Willebrand factor and ADAMTS13 in arterial thrombosis: a systematic review and meta-analysis. Blood Rev 2014; 28: 167-178.
  • 77 Sanders YV. et al. Reduced prevalence of arterial thrombosis in von Willebrand disease. J Thromb Haemost 2013; 11: 845-854.
  • 78 Seaman CD. et al. Does deficiency of von Willebrand factor protect against cardiovascular disease? Analysis of a national discharge register. J Thromb Haemost 2015; 13: 1999-2003.
  • 79 Carter AM. et al. Platelet GP IIIa PlA and GP Ib variable number tandem repeat polymorphisms and markers of platelet activation in acute stroke. Arterioscl Thromb Vasc Biol 1998; 18: 1124-1131.
  • 80 Bustamante A. et al. Abstract 189: ADAMTS13 Activity Predicts Response to Thrombolysis in the Acute Stroke Setting. Stroke 2015; 46: A189-189.
  • 81 Kageyama S. et al. Pharmacokinetics and pharmacodynamics of AJW200, a humanized monoclonal antibody to von Willebrand factor, in monkeys. Arterioscl Thromb Vasc Biol 2002; 22: 187-192.
  • 82 Machin SJ. et al. A humanized monoclonal antibody against VWF A1 domain inhibits VWF: RiCof activity and platelet adhesion in human volunteers. J Thromb Haemost. 2003 01. Abstract OC328
  • 83 Gilbert JC. et al. First-in-human evaluation of anti von Willebrand factor therapeutic aptamer ARC1779 in healthy volunteers. Circulation 2007; 116: 2678-2686.
  • 84 Ulrichts H. et al. Antithrombotic drug candidate ALX-0081 shows superior preclinical efficacy and safety compared with currently marketed antiplatelet drugs. Blood 2011; 118: 757-765.
  • 85 Jilma-Stohlawetz P. et al The anti-von Willebrand factor aptamer ARC1779 increases von Willebrand factor levels and platelet counts in patients with type 2B von Willebrand disease. Thromb Haemost 2012; 108: 284-290.
  • 86 Jilma-Stohlawetz P. et al Inhibition of von Willebrand factor by ARC1779 in patients with acute thrombotic thrombocytopenic purpura. Thromb Haemost 2011; 105: 545-552.
  • 87 Knöbl P. et al Anti-von Willebrand factor aptamer ARC1779 for refractory thrombotic thrombocytopenic purpura. Transfusion 2009; 49: 2181-2185.
  • 88 Holz J-B. The TITAN trial – Assessing the efficacy and safety of an anti-von Willebrand factor Nanobody in patients with acquired thrombotic thrombocytopenic purpura. Transfusion Apheresis Sci 2012; 46: 343-346.
  • 89 Peyvandi F. et al. Caplacizumab for Acquired Thrombotic Thrombocytopenic Purpura. N Engl J Med 2016; 374: 511-522.