Thromb Haemost 2016; 116(02): 300-308
DOI: 10.1160/TH15-11-0898
Blood Cells, Inflammation and Infection
Schattauer GmbH

Endothelial RAGE exacerbates acute postischaemic cardiac inflammation

Tilman Ziegler
1   Medizinische Klinik und Poliklinik I, University Clinic Grosshadern, LMU Munich, Munich, Germany
,
Melanie Horstkotte
1   Medizinische Klinik und Poliklinik I, University Clinic Grosshadern, LMU Munich, Munich, Germany
,
Philipp Lange
1   Medizinische Klinik und Poliklinik I, University Clinic Grosshadern, LMU Munich, Munich, Germany
,
Judy Ng
1   Medizinische Klinik und Poliklinik I, University Clinic Grosshadern, LMU Munich, Munich, Germany
2   1. Medizinische Klinik und Poliklinik, Klinikum Rechts der Isar, TUM Munich, Munich, Germany
3   DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
,
Dario Bongiovanni
1   Medizinische Klinik und Poliklinik I, University Clinic Grosshadern, LMU Munich, Munich, Germany
2   1. Medizinische Klinik und Poliklinik, Klinikum Rechts der Isar, TUM Munich, Munich, Germany
3   DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
,
Rabea Hinkel
1   Medizinische Klinik und Poliklinik I, University Clinic Grosshadern, LMU Munich, Munich, Germany
2   1. Medizinische Klinik und Poliklinik, Klinikum Rechts der Isar, TUM Munich, Munich, Germany
3   DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
4   Institute for Cardiovascular Prevention, LMU Munich, Germany
,
Karl-Ludwig Laugwitz
1   Medizinische Klinik und Poliklinik I, University Clinic Grosshadern, LMU Munich, Munich, Germany
,
Markus Sperandio
3   DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
5   Walter-Brendel-Centre for Experimental Medicine, LMU Munich, Germany
,
Jan Horstkotte
1   Medizinische Klinik und Poliklinik I, University Clinic Grosshadern, LMU Munich, Munich, Germany
,
Christian Kupatt
1   Medizinische Klinik und Poliklinik I, University Clinic Grosshadern, LMU Munich, Munich, Germany
2   1. Medizinische Klinik und Poliklinik, Klinikum Rechts der Isar, TUM Munich, Munich, Germany
3   DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
5   Walter-Brendel-Centre for Experimental Medicine, LMU Munich, Germany
› Author Affiliations
Further Information

Publication History

Received: 24 November 2015

Accepted after major revision: 24 April 2016

Publication Date:
09 March 2018 (online)

Summary

Advanced glycation end-products (AGEs) interact with their receptor RAGE, leading to an inflammatory state. We investigated the role of RAGE in postischaemic leukocyte adhesion after myocardial infarction and its effect on postischaemic myocardial function. Wildtype (WT), ICAM-1-/-, RAGE-/- or ICAM-1/RAGE-/- mice underwent 20 minutes (min) of LAD-occlusion followed by 15 min of reperfusion. We applied in vivo fluorescence microscopy visualising Rhodamine-6G labelled leukocytes. To differentiate between endothelial and leukocyte RAGE, we generated bone marrow chimeric mice. Invasive hemodynamic measurements were performed in mice undergoing 45 min of myocardial ischaemia (via LAD-occlusion) followed by 24 hours of reperfusion. Left-ventricular developed pressure (LVDP) was assessed by insertion of a millar-tip catheter into the left ventricle. In the acute model of myocardial ischaemia, leukocyte retention (WT 68 ± 4 cells/ hpf) was significantly reduced in ICAM-1-/- (40 ± 3 cells/hpf) and RAGE-/- mice (38 ± 4 cells/hpf). ICAM-1/RAGE-/- mice displayed an additive reduction of leukocyte retention (ICAM-1/RAGE-/- 15 ± 3 cells/ hpf). Ly-6G+ neutrophil were predominantly reduced in ICAM-1/RAGE-/- hearts (28%), whereas Ly-6C+ proinflammatory monocytes decreased to a lesser extent (55%). Interestingly, PMN recruitment was not affected in chimeric mice with RAGE deficiency in BM cells (WT mice reconstituted with ICAM-1/RAGE-/- BM: 55 ± 4 cells/hpf) while in mice with global RAGE deficiency (ICAM-1/RAGE-/- mice reconstituted with ICAM-1/RAGE-/- BM) leucocyte retention was significantly reduced (13 ± 1 cells/hpf), similar to non-transplanted ICAM/ RAGE-/- mice. Furthermore, postischaemic LVDP increased in ICAM-1/RAGE-/- animals (98 ± 4 mmHg vs 86 ± 4 mmHg in WT mice). In conclusion, combined deficiency of ICAM-1 and RAGE reduces leukocyte influx into infarcted myocardium and improves LV function during the acute phase after myocardial ischaemia and reperfusion. RAGE represents an additional pro-inflammatory endothelial mediator of ischaemia-reperfusion injury.

 
  • References

  • 1 Orogo AM, Gustafsson AB.. Cell death in the myocardium: my heart won't go on. IUBMB life 2013; 65: 651-656.
  • 2 Frangogiannis NG.. Regulation of the inflammatory response in cardiac repair. Circulation Res 2012; 110: 159-173.
  • 3 Timmers L, Pasterkamp G, de Hoog VC. et al. The innate immune response in reperfused myocardium. Cardiovasc Res 2012; 94: 276-283.
  • 4 Epelman S, Liu PP, Mann DL.. Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nature Rev Immunol 2015; 15: 117-129.
  • 5 Alard JE, Ortega-Gomez A, Wichapong K. et al. Recruitment of classical monocytes can be inhibited by disturbing heteromers of neutrophil HNP1 and platelet CCL5. Science Transl Med 2015; 7: 317ra196.
  • 6 Wantha S, Alard JE, Megens RT. et al. Neutrophil-derived cathelicidin promotes adhesion of classical monocytes. Circulation Res 2013; 112: 792-801.
  • 7 Andrassy M, Volz HC, Igwe JC. et al. High-mobility group box-1 in ischaemia-reperfusion injury of the heart. Circulation 2008; 117: 3216-3226.
  • 8 Sharma AK, LaPar DJ, Stone ML. et al. Receptor for advanced glycation end products (RAGE) on iNKT cells mediates lung ischaemia-reperfusion injury. Am J Transplant 2013; 13: 2255-2267.
  • 9 Frommhold D, Kamphues A, Hepper I. et al. RAGE and ICAM-1 cooperate in mediating leukocyte recruitment during acute inflammation in vivo. Blood 2010; 116: 841-849.
  • 10 Liliensiek B, Weigand MA, Bierhaus A. et al. Receptor for advanced glycation end products (RAGE) regulates sepsis but not the adaptive immune response. J Clin Invest 2004; 113: 1641-1650.
  • 11 Xu H, Gonzalo JA, St Pierre Y. et al. Leukocytosis and resistance to septic shock in intercellular adhesion molecule 1-deficient mice. J Exp Med 1994; 180: 95-109.
  • 12 Horstkotte J, Perisic T, Schneider M. et al. Mitochondrial thioredoxin reductase is essential for early postischaemic myocardial protection. Circulation 2011; 124: 2892-2902.
  • 13 Kupatt C, Wichels R, Horstkotte J. et al. Molecular mechanisms of platelet-mediated leukocyte recruitment during myocardial reperfusion. J Leukocyte Biol 2002; 72: 455-461.
  • 14 Baatz H, Steinbauer M, Harris AG. et al. Kinetics of white blood cell staining by intravascular administration of rhodamine 6G. Intern J Microcirc 1995; 15: 85-91.
  • 15 Jbeily N, Claus RA, Dahlke K. et al. Comparative suitability of CFDA-SE and rhodamine 6G for in vivo assessment of leukocyte-endothelium interactions. J Biophoton 2014; 7: 369-375.
  • 16 Ritter LS, McDonagh PF.. Low-flow reperfusion after myocardial ischaemia enhances leukocyte accumulation in coronary microcirculation. Am J Physiol 1997; 273: H1154-1165.
  • 17 Fiuza C, Bustin M, Talwar S. et al. Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood 2003; 101: 2652-2660.
  • 18 Tsoporis JN, Izhar S, Leong-Poi H. et al. S100B Interaction With the Receptor for Advanced Glycation End Products (RAGE): A Novel Receptor-Mediated Mechanism for Myocyte Apoptosis Postinfarction. Circulation Res 2010; 106: 93-101.
  • 19 Dustin ML, Rothlein R, Bhan AK. et al. Induction by IL 1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J Immunol 1986; 137: 245-254.
  • 20 Kohka Takahashi H, Sadamori H, Liu K. et al. Role of cell-cell interactions in high mobility group box 1 cytokine activity in human peripheral blood mononuclear cells and mouse splenocytes. Eur J Pharmacol 2013; 701: 194-202.
  • 21 Fan H, Sun B, Gu Q. et al. Oxygen radicals trigger activation of NF-kappaB and AP-1 and upregulation of ICAM-1 in reperfused canine heart. Am J Physiol Heart Circ Physiol 2002; 282: H1778-1786.
  • 22 Gotsch U, Jager U, Dominis M. et al. Expression of P-selectin on endothelial cells is upregulated by LPS and TNF-alpha in vivo. Cell Adhes Commun 1994; 2: 7-14.
  • 23 AbuSamra DB, Al-Kilani A, Hamdan SM. et al. Quantitative Characterisation of E-selectin Interaction with Native CD44 and P-selectin Glycoprotein Ligand-1 (PSGL-1) Using a Real Time Immunoprecipitation-based Binding Assay. J Biol Chem 2015; 290: 21213-21230.
  • 24 Frangogiannis NG, Smith CW, Entman ML.. The inflammatory response in myocardial infarction. Cardiovasc Res 2002; 53: 31-47.
  • 25 Muzumdar RH, Huffman DM, Calvert JW. et al. Acute humanin therapy attenuates myocardial ischaemia and reperfusion injury in mice. Arterioscl Thromb Vasc Biol 2010; 30: 1940-1948.
  • 26 Hinkel R, Lange P, Petersen B. et al. Heme Oxygenase-1 Gene Therapy Provides Cardioprotection Via Control of Post-Ischaemic Inflammation: An Experimental Study in a Pre-Clinical Pig Model. J Am Coll Cardiol 2015; 66: 154-165.
  • 27 Duilio C, Ambrosio G, Kuppusamy P. et al. Neutrophils are primary source of O2 radicals during reperfusion after prolonged myocardial ischaemia. Am J Physiol Heart Circ Physiol 2001; 280: H2649-2657.
  • 28 Zweier JL, Talukder MA.. The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res 2006; 70: 181-190.
  • 29 Entman ML, Youker K, Shoji T. et al. Neutrophil induced oxidative injury of cardiac myocytes. A compartmented system requiring CD11b/CD18-ICAM-1 adherence. J Clin Invest 1992; 90: 1335-1345.
  • 30 Horckmans M, Ring L, Duchene J. et al. Neutrophils orchestrate post-myocardial infarction healing by polarising macrophages towards a reparative phenotype. Eur Heart J. 2016 Epub ahead of print.
  • 31 Luan ZG, Zhang H, Yang PT. et al. HMGB1 activates nuclear factor-kappaB signaling by RAGE and increases the production of TNF-alpha in human umbilical vein endothelial cells. Immunobiology 2010; 215: 956-962.
  • 32 Mazzini GS, Schaf DV, Oliveira AR. et al. The ischaemic rat heart releases S100B. Life sciences 2005; 77: 882-889.
  • 33 Cipollone F, Iezzi A, Fazia M. et al. The receptor RAGE as a progression factor amplifying arachidonate-dependent inflammatory and proteolytic response in human atherosclerotic plaques: role of glycemic control. Circulation 2003; 108: 1070-1077.
  • 34 Kupatt C, Wichels R, Deiss M. et al. Retroinfusion of NFkappaB decoy oligonucleotide extends cardioprotection achieved by CD18 inhibition in a preclinical study of myocardial ischaemia and retroinfusion in pigs. Gene Ther 2002; 9: 518-526.
  • 35 Goligorsky MS, Patschan D, Kuo MC.. Weibel-Palade bodies--sentinels of acute stress. Nature Rev Nephrol 2009; 5: 423-426.
  • 36 Ziegler T, Horstkotte J, Schwab C. et al. Angiopoietin 2 mediates microvascular and hemodynamic alterations in sepsis. J Clin Invest 2013; 123: 3436-3445.
  • 37 Moss ML, Jin SL, Milla ME. et al. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature 1997; 385: 733-736.
  • 38 Yun N, Eum HA, Lee SM.. Protective role of heme oxygenase-1 against liver damage caused by hepatic ischaemia and reperfusion in rats. Antiox Redox Signal 2010; 13: 1503-1512.
  • 39 Volz HC, Laohachewin D, Seidel C. et al. S100A8/A9 aggravates post-ischaemic heart failure through activation of RAGE-dependent NF-kappaB signaling. Basic Res Cardiol 2012; 107: 250.
  • 40 So A, Hsieh J, Li JY. et al. Quantitative myocardial perfusion measurement using CT perfusion: a validation study in a porcine model of reperfused acute myocardial infarction. Internat J Cardiovasc Imag 2012; 28: 1237-1248.