Thromb Haemost 2014; 111(04): 705-712
DOI: 10.1160/TH13-07-0555
Blood Coagulation, Fibrinolysis and Cellular Haemostasis
Schattauer GmbH

A model predicting fluindione dose requirement in elderly inpatients including genotypes, body weight, and amiodarone

Caroline Moreau
1   Sorbonne Paris Cité, INSERM UMR-S-775, Université Paris Descartes, Paris, France
2   Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Biochimie UF Pharmacogénétique et Oncologie Moléculaire, Paris, France
3   Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service d’Hématologie Biologique, Paris, France
,
Eric Pautas
4   Assistance Publique Hôpitaux de Paris, Hôpital Charles Foix, Service de Gériatrie, Ivry-sur-Seine, France
5   Sorbonne Paris Cité, INSERM UMR-S-765, Université Paris Descartes, Paris, France
,
Charlotte Duverlie
3   Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service d’Hématologie Biologique, Paris, France
,
Celia Berndt
1   Sorbonne Paris Cité, INSERM UMR-S-775, Université Paris Descartes, Paris, France
5   Sorbonne Paris Cité, INSERM UMR-S-765, Université Paris Descartes, Paris, France
,
Marion Andro
6   CHRU de Brest, Service de Médecine Interne-Gériatrie, Brest, France
,
Isabelle Mahé
7   Assistance Publique Hôpitaux de Paris, Hôpital Louis Mourier, Service de Médecine Interne, Colombes, France
,
Joseph Emmerich
5   Sorbonne Paris Cité, INSERM UMR-S-765, Université Paris Descartes, Paris, France
8   Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Médecine Vasculaire, Paris, France
,
Karine Lacut
9   EA3878, Université de Bretagne Occidentale – Inserm, Centre d’Investigation Clinique CIC 0502, Brest France
,
Grégoire Le Gal
9   EA3878, Université de Bretagne Occidentale – Inserm, Centre d’Investigation Clinique CIC 0502, Brest France
,
Isabelle Peyron
10   Assistance Publique Hôpitaux de Paris, Hôpital Charles Foix, Pharmacie, Ivry-sur-Seine, France
,
Isabelle Gouin-Thibault
5   Sorbonne Paris Cité, INSERM UMR-S-765, Université Paris Descartes, Paris, France
11   Assistance Publique Hôpitaux de Paris, Hôpital Cochin-Hôtel-Dieu, Service d’Hématologie Biologique, Paris, France
,
Jean-Louis Golmard
12   Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Biostatistiques, Paris, France
,
Marie-Anne Loriot
1   Sorbonne Paris Cité, INSERM UMR-S-775, Université Paris Descartes, Paris, France
,
Virginie Siguret
3   Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service d’Hématologie Biologique, Paris, France
5   Sorbonne Paris Cité, INSERM UMR-S-765, Université Paris Descartes, Paris, France
› Author Affiliations
Further Information

Publication History

Received: 11 July 2013

Accepted after major revision: 16 November 2013

Publication Date:
29 November 2017 (online)

Summary

Indandione VKAs have been widely used for decades, especially in Eastern Europe and France. Contrary to coumarin VKAs, the relative contribution of individual factors to the indandione-VKA response is poorly known. In the present multicentre study, we sought to develop and validate a model including genetic and non-genetic factors to predict the daily fluindione dose requirement in elderly patients in whom VKA dosing is challenging. We prospectively recorded clinical and therapeutic data in 230 Caucasian inpatients mean aged 85 ± 6 years, who had reached international normalized ratio stabilisation (range 2.0–3.0) on fluindione. In the derivation cohort (n=156), we analysed 13 polymorphisms in seven genes potentially involved in the pharmacological effect or vitamin-K cycle (VKORC1, CYP4F2, EPHX1) and fluindione metabolism/transport (CYP2C9, CYP2C19, CYP3A5, ABCB1). We built a regression model incorporating non-genetic and genetic data and evaluated the model performances in a separate cohort (n=74). Body-weight, amiodarone intake, VKORC1, CYP4F2, ABCB1 genotypes were retained in the final model, accounting for 31.5% of dose variability. None influence of CYP2C9 was observed. Our final model showed good performances: in 83.3% of the validation cohort patients, the dose was accurately predicted within 5 mg, i.e. the usual step used for adjusting fluindione dosage. In conclusion, in addition to body-weight and amiodarone-intake, pharmacogenetic factors (VKORC1,CYP4F2,ABCB1) related to the pharmacodynamic effect and transport of fluindione significantly influenced the dose requirement in elderly patients while CYP2C9 did not. Studies are required to know whether fluindione could be an alternative VKA in carriers of polymorphic CYP2C9 alleles, hypersensitive to coumarins.

 
  • References

  • 1 D’Andrea G, D’Ambrosio RL, Di Perna P. et al. A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin.. Blood 2005; 105: 645-649.
  • 2 Carlquist JF, Horne BD, Muhlestein JB. et al. Genotypes of the cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: a prospective study.. J Thromb Thrombolysis 2006; 22: 191-197.
  • 3 Schalekamp T, Brasse BP, Roijers JF. et al. VKORC1 and CYP2C9 genotypes and acenocoumarol anticoagulation status: interaction between both genotypes affects overanticoagulation.. Clin Pharmacol Ther 2006; 80: 13-22.
  • 4 Caldwell MD, Awad T, Johnson JA. et al. CYP4F2 genetic variant alters required warfarin dose.. Blood 2008; 111: 4106-4112.
  • 5 Cooper GM, Johnson JA, Langaee TY. et al. A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose.. Blood 2008; 112: 1022-1027.
  • 6 Gage BF, Lesko LJ. Pharmacogenetics of warfarin: regulatory, scientific, and clinical issues.. J Thromb Thrombolysis 2008; 25: 45-51.
  • 7 Wadelius M, Chen LY, Lindh JD. et al. The largest prospective warfarin-treated cohort supports genetic forecasting.. Blood 2009; 113: 784-792.
  • 8 Takeuchi F, McGinnis R, Bourgeois S. et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose.. PLoS Genet 2009; 5: e1000433.
  • 9 Perez-Andreu V, Roldan V, Anton AI. et al. Pharmacogenetic relevance of CYP4F2 V433M polymorphism on acenocoumarol therapy.. Blood 2009; 113: 4977-4979.
  • 10 Carlquist JF, Horne BD, Mower C. et al. An evaluation of nine genetic variants related to metabolism and mechanism of action of warfarin as applied to stable dose prediction.. J Thromb Thrombolysis 2010; 30: 358-364.
  • 11 Pautas E, Moreau C, Gouin-Thibault I. et al. Genetic factors (VKORC1, CYP2C9, EPHX1, and CYP4F2) are predictor variables for warfarin response in very elderly, frail inpatients.. Clin Pharmacol Ther 2010; 87: 57-64.
  • 12 Moreau C, Bajolle F, Siguret V. et al. Vitamin K antagonists in children with heart disease: height and VKORC1 genotype are the main determinants of the warfarin dose requirement.. Blood 2012; 119: 861-867.
  • 13 Mentre F, Pousset F, Comets E. et al. Population pharmacokinetic-pharmacody-namic analysis of fluindione in patients.. Clin Pharmacol Ther 1998; 63: 64-78.
  • 14 Ageno W, Gallus AS, Wittkowsky A. et al. Oral Anticoagulant Therapy: Anti-thrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines.. Chest 2012; 141 (Suppl. 02) e44S-88S.
  • 15 Cazaux V, Gauthier B, Elias A. et al. Predicting daily maintenance dose of fluin-dione, an oral anticoagulant drug.. Thromb Haemost 1996; 75: 731-733.
  • 16 Comets E, Pousset F, Mentre F. et al. Prediction of fluindione maintenance dosage hampered by large intraindividual variability.. Ther Drug Monit 2000; 22: 668-675.
  • 17 Warot D, Berlin I, Aymard G. et al. Beraprost sodium-fluindione combination in healthy subjects: pharmacokinetic and pharmacodynamic aspects.. Fundam Clin Pharmacol 2000; 14: 231-236.
  • 18 Lacut K, Ayme-Dietrich E, Gourhant L. et al. Impact of genetic factors (VKORC1, CYP2C9, CYP4F2 and EPHX1) on anticoagulation response to fluindione.. Br J Clin Pharmacol 2012; 73: 428-436.
  • 19 Verstuyft C, Delavenne X, Rousseau A. et al. A pharmacokinetic-pharmacody-namic model for predicting the impact of CYP2C9 and VKORC1 polymorphisms on fluindione and acenocoumarol during induction therapy.. Clin Phar-macokinet 2012; 51: 41-53.
  • 20 Comets E, Diquet B, Legrain S. et al. Pharmacokinetic and pharmacodynamic variability of fluindione in octogenarians.. Clin Pharmacol Ther 2012; 91: 777-786.
  • 21 Teichert M, Eijgelsheim M, Rivadeneira F. et al. A genome-wide association study of acenocoumarol maintenance dosage.. Hum Mol Genet 2009; 18: 3758-3768.
  • 22 Teichert M, Eijgelsheim M, Uitterlinden AG. et al. Dependency of phenprocou-mon dosage on polymorphisms in the VKORC1, CYP2C9, and CYP4F2 genes.. Pharmacogenet Genomics 2011; 21: 26-34.
  • 23 Mulot C, Stucker I, Clavel J. et al. Collection of human genomic DNA from buc-cal cells for genetics studies: comparison between cytobrush, mouthwash, and treated card.. J Biomed Biotechnol 2005; 2005: 291-296.
  • 24 Gage BF, Eby C, Johnson JA. et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin.. Clin Pharmacol Ther 2008; 84: 326-331.
  • 25 Klein TE, Altman RB, Eriksson N. et al. Estimation of the warfarin dose with clinical and pharmacogenetic data.. N Engl J Med 2009; 360: 753-764.
  • 26 Lenzini P, Wadelius M, Kimmel S. et al. Integration of genetic, clinical, and INR data to refine warfarin dosing.. Clin Pharmacol Ther 2010; 87: 572-578.
  • 27 Moreau C, Pautas E, Gouin-Thibault I. et al. Predicting the warfarin maintenance dose in elderly inpatients at treatment initiation: accuracy of dosing algorithms incorporating or not VKORC1/CYP2C9 genotypes.. J Thromb Haemost 2011; 9: 711-718.
  • 28 Burmester JK, Berg RL, Yale SH. et al. A randomized controlled trial of genotype-based Coumadin initiation.. Genet Med 2011; 13: 509-518.
  • 29 Gong IY, Tirona RG, Schwarz UI. et al. Prospective evaluation of a pharmaco-genetics-guided warfarin loading and maintenance dose regimen for initiation of therapy.. Blood 2011; 118: 3163-3171.
  • 30 Johnson JA, Gong L, Whirl-Carrillo M. et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 Genotypes and Warfarin Dosing.. Clin Pharmacol Ther 2011; 90: 625-629.
  • 31 Mahé I, Grenard AS, Joyeux N. et al. Management of oral anticoagulant in clinical practice: a retrospective study of 187 patients.. J Gerontol A Biol Sci Med Sci 2004; 59: 1339-1342.
  • 32 Schalekamp T, Brasse BP, Roijers JF. et al. VKORC1 and CYP2C9 genotypes and phenprocoumon anticoagulation status: interaction between both genotypes affects dose requirement.. Clin Pharmacol Ther 2007; 81: 185-193.
  • 33 Bodin L, Verstuyft C, Tregouet DA. et al. Cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genotypes as determinants of aceno- coumarol sensitivity.. Blood 2005; 106: 135-140.
  • 34 Xie HG, Prasad HC, Kim RB. et al. CYP2C9 allelic variants: ethnic distribution and functional significance.. Adv Drug Deliv Rev 2002; 54: 1257-1270.
  • 35 Marzolini C, Paus E, Buclin T. et al. Polymorphisms in human MDR1 (P-glyco-protein): recent advances and clinical relevance.. Clin Pharmacol Ther 2004; 75: 13-33.
  • 36 Zhou S. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition.. Xenobiotica 2008; 38: 802-832.
  • 37 Yamreudeewong W, DeBisschop M, Martin LG. et al. Potentially significant drug interactions of class III antiarrhythmic drugs.. Drug Saf 2003; 26: 421-438.