Thromb Haemost 2014; 111(03): 401-416
DOI: 10.1160/TH13-05-0421
Blood Coagulation, Fibrinolysis and Cellular Haemostasis
Schattauer GmbH

Pneumococcal phosphoglycerate kinase interacts with plasminogen and its tissue activator

Marcus Fulde*
1   Department of Medical Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
2   Current adress: Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
,
Noelia Bernardo-García*
3   Department of Crystallograhy and Structural Biology, Instituto de Química-Física “Rocasolano”, CSIC, Madrid, Spain
,
Manfred Rohde
1   Department of Medical Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
,
Nadine Nachtigall
1   Department of Medical Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
,
Ronald Frank
4   Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
,
Klaus T. Preissner
5   Institute for Biochemistry, Justus-Liebig University of Giessen, Giessen, Germany;
,
Javier Klett
6   Unidad de Bioinformática, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus UAM, Madrid, Spain
,
Antonio Morreale
6   Unidad de Bioinformática, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus UAM, Madrid, Spain
7   Current adress: Repsol, Technology Center, Móstoles, Madrid, Spain
,
G. Singh Chhatwal
1   Department of Medical Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
,
Juan A. Hermoso
3   Department of Crystallograhy and Structural Biology, Instituto de Química-Física “Rocasolano”, CSIC, Madrid, Spain
,
Simone Bergmann
1   Department of Medical Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
8   Current adress: Department of Infection Biology, Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
› Author Affiliations
Financial support: The research leading to these results has received funding from the European Community’s Seventh Framework Program under Grant Agreement no. HEALTH-F3–2009–223111. This work was also supported by grants from the Spanish Ministry of Economy and Competitiveness (BFU2011–25326) and Comunidad Autónoma de Madrid (CAM) S2010-BMD-2457 (BIPEDD2). J.K. is funded by a grant from Ministerio de Economía y Competitividad (BFU2011–24595). A.M. also acknowledges CAM for financial support to the Fundación Severo Ochoa through the AMAROUTO program.
Further Information

Publication History

Received: 24 May 2013

Accepted after major revision: 01 October 2013

Publication Date:
22 November 2017 (online)

Summary

Streptococcus pneumoniae is not only a commensal of the nasopharyngeal epithelium, but may also cause life-threatening diseases. Immune-electron microscopy studies revealed that the bacterial glycolytic enzyme, phosphoglycerate kinase (PGK), is localised on the pneumococcal surface of both capsulated and non-capsulated strains and colocalises with plasminogen. Since pneumococci may concentrate host plasminogen (PLG) together with its activators on the bacterial cell surface to facilitate the formation of plasmin, the involvement of PGK in this process was studied. Specific binding of human or murine PLG to strain-independent PGK was documented, and surface plasmon resonance analyses indicated a high affinity interaction with the kringle domains 1–4 of PLG. Crystal structure determination of pneumococcal PGK together with peptide array analysis revealed localisation of PLG-binding site in the N-terminal region and provided structural motifs for the interaction with PLG. Based on structural analysis data, a potential interaction of PGK with tissue plasminogen activator (tPA) was proposed and experimentally confirmed by binding studies, plasmin activity assays and thrombus degradation analyses.

* These authors contributed equally to the work.


 
  • References

  • 1 Cartwright K. Pneumococcal disease in western Europe: burden of disease, antibiotic resistance and management. Eur J Pediatr 2002; 161: 188-195.
  • 2 Kadioglu A, Weiser JN, Paton JC. et al. The role of Streptococcus pneumoniae virulence factors in host respiratory colonisation and disease. Nat Rev Microbiol 2008; 6: 288-301.
  • 3 Bergmann S, Hammerschmidt S. Versatility of pneumococcal surface proteins. Microbiology 2006; 152: 295-303.
  • 4 Pérez-Dorado I, Galan-Bartual S, Hermoso JA. Pneumococcal surface proteins: when the whole is greater than the sum of its parts. Mol Oral Microbiol 2012; 4: 221-245.
  • 5 Bergmann S, Rohde M, Preissner KT. et al. The nine residue plasminogen-bind-ing motif of the pneumococcal enolase is the major cofactor of plasmin-mediated degradation of extracellular matrix, dissolution of fibrin and transmigration. Thromb Haemost 2005; 94: 304-311.
  • 6 Bergmann S, Hammerschmidt S. Fibrinolysis and host response in bacterial infections. Thromb Haemost 2007; 98: 512-520.
  • 7 Miyashita C, Wenzel E, Heiden M. Plasminogen: a brief introduction into its biochemistry and function. Haemostasis 1988; 18 (Suppl. 01) 7-13.
  • 8 Chavakis T, Athanasopoulos A, Rhee JS. et al. Angiostatin is a novel anti-inflammatory factor by inhibiting leukocyte recruitment. Blood 2005; 105: 1036-1043.
  • 9 Duboscq C, Genoud V, Parborell MF. et al. Impaired clot lysis by rt-PA catalysed mini-plasminogen activation. Thromb Res 1997; 86: 505-513.
  • 10 Castellino FJ, Powell JR. Human plasminogen. Methods Enzymol 1981; 80: 365-378.
  • 11 Winkler F, Kastenbauer S, Koedel U. et al. Role of the urokinase plasminogen activator system in patients with bacterial meningitis. Neurology 2002; 59: 1350-1355.
  • 12 Donofrio FC, Calil AC, Miranda ET. et al. Enolase from Paracoccidioides brasil-iensis: isolation and identification as a fibronectin-binding protein. J Med Microbiol 2009; 58: 706-713.
  • 13 Carneiro CR, Postol E, Nomizo R. et al. Identification of enolase as a laminin-binding protein on the surface of Staphylococcus aureus . Microbes Infect 2004; 6: 604-608.
  • 14 Bergmann S, Rohde M, Chhatwal GS. et al. alpha-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol Microbiol 2001; 40: 1273-1287.
  • 15 Hughes MJ, Moore JC, Lane JD. et al. Identification of major outer surface proteins of Streptococcus agalactiae. Infect Immun 2002; 70: 1254-1259.
  • 16 Bernstein BE, Michels PA, Hol WG. Synergistic effects of substrate-induced conformational changes in phosphoglycerate kinase activation. Nature 1997; 385: 275-278.
  • 17 Pecorari F, Guilbert C, Minard P. et al. Folding and functional complementation of engineered fragments from yeast phosphoglycerate kinase. Biochemistry 1996; 35: 3465-3476.
  • 18 Bergmann S, Lang A, Rohde M. et al. Integrin-linked kinase is required for vit-ronectin-mediated internalisation of Streptococcus pneumoniae by host cells. J Cell Sci 2009; 122: 256-267.
  • 19 Frank R, Overwin H. SPOT synthesis. Epitope analysis with arrays of synthetic peptides prepared on cellulose membranes. Methods Mol Biol 1996; 66: 149-169.
  • 20 Bergmann S, Wild D, Diekmann O. et al. Identification of a novel plas-min(ogen)-binding motif in surface displayed alpha-enolase of Streptococcus pneumoniae. Mol Microbiol 2003; 49: 411-423.
  • 21 Bernardo-Garcia N, Bartual SG, Fulde M. et al. Crystallisation and preliminary X-ray diffraction analysis of phosphoglycerate kinase from Streptococcus pneu-moniae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67: 1285-1289.
  • 22 Leslie AG. The integration of macromolecular diffraction data. Acta Crystallogr D Biol Crystallogr 2006; 62: 48-57.
  • 23 Auerbach G, Huber R, Grättinger M. et al. Closed structure of phosphoglycerate kinase from Thermotoga maritima reveals the catalytic mechanism and determinants of thermal stability. Structure 1997; 5: 1475-1483.
  • 24 Adams PD, Afonine PV, Bunkoczi G. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 2010; 66: 213-221.
  • 25 Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004; 60: 2126-2132.
  • 26 Lyskov S, Gray JJ. The Rosetta Dock server for local protein-protein docking. Nucleic Acids Res 2008; 36: W233-238.
  • 27 Duan Y, Wu C, Chowdhury S. et al. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 2003; 24: 1999-2012.
  • 28 Lee MC, Duan Y. Distinguish protein decoys by using a scoring function based on a new AMBER force field. Short molecular dynamincs simulations, and the generalized born solvent model. Proteins 2004; 55: 620-634.
  • 29 Case DA, Cheatham 3rd TE, Darden T. et al. The Amber biomolecular simulation programs. J Comput Chem 2005; 26: 1668-1688.
  • 30 Morreale A, Gil-Redondo R, Ortiz AR. A new implicit solvent model for pro-tein-ligand docking. Proteins 2007; 67: 606-616.
  • 31 van der Linden M, Al-Lahham A, Nicklas W. et al. Molecular characterisation of pneumococcal isolates from pets and laboratory animals. PLoS One 2009; 4: e8286
  • 32 Ehinger S, Schubert WD, Bergmann S. et al. Plasmin(ogen)-binding alpha-eno-lase from Streptococcus pneumoniae: crystal structure and evaluation of plas-min(ogen)-binding sites. J Mol Biol 2004; 343: 997-1005.
  • 33 Law RH, Caradoc-Davies T, Cowieson N. et al. The X-ray crystal structure of full-length human plasminogen. Cell Rep 2012; 1: 185-190.
  • 34 de Vos AM, Ultsch MH, Kelley RF. et al. Crystal structure of the kringle 2 domain of tissue plasminogen activator at 2.4-A resolution. Biochemistry 1992; 31: 270-279.
  • 35 Huai Q, Mazar AP, Kuo A. et al. Structure of human urokinase plasminogen activator in complex with its receptor. Science 2006; 311: 656-659.
  • 36 Ullberg M, Wiman B, Kronvall G. Binding of tissue-type plasminogen activator (t-PA) to Neisseria meningitidis and Haemophilus influenzae. FEMS Immunol Med Microbiol 1994; 9: 171-177.
  • 37 Abad MC, Arni RK, Grella DK. et al. The X-ray crystallographic structure of the angiogenesis inhibitor angiostatin. J Mol Biol 2002; 318: 1009-1017.
  • 38 Kinnby B, Booth NA, Svensater G. Plasminogen binding by oral streptococci from dental plaque and inflammatory lesions. Microbiology 2008; 154: 924-931.
  • 39 Boone TJ, Burnham CA, Tyrrell GJ. Binding of group B streptococcal phosphog-lycerate kinase to plasminogen and actin. Microb Pathog 2011; 51: 255-261.
  • 40 Boone TJ, Tyrrell GJ. Identification of the actin and plasminogen binding regions of group B streptococcal phosphoglycerate kinase. J Biol Chem 2012; 287: 29035-29044.
  • 41 Pancholi V, Fischetti VA. alpha-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J Biol Chem 1998; 273: 14503-14515.
  • 42 Pancholi V. Multifunctional alpha-enolase: its role in diseases. Cell Mol Life Sci 2001; 58: 902-920.
  • 43 Fu Q, Figuera-Losada M, Ploplis VA. et al. The lack of binding of VEK-30, an internal peptide from the group A streptococcal M-like protein, PAM, to murine plasminogen is due to two amino acid replacements in the plasminogen kringle-2 domain. J Biol Chem 2008; 283: 1580-1587.
  • 44 Wu TP, Padmanabhan KP, Tulinsky A. The structure of recombinant plasmi-nogen kringle 1 and the fibrin binding site. Blood Coagul Fibrinolysis 1994; 5: 157-166.
  • 45 Marti DN, Schaller J, Llinas M. Solution structure and dynamics of the plasmi-nogen kringle 2-AMCHA complex: 3(1)-helix in homologous domains. Biochemistry 1999; 38: 15741-15755.
  • 46 Christen MT, Frank P, Schaller J. et al. Human plasminogen kringle 3: solution structure, functional insights, phylogenetic landscape. Biochemistry 2010; 49: 7131-7150.
  • 47 Stec B, Yamano A, Whitlow M. et al. Structure of human plasminogen kringle 4 at 1.68 a and 277 K. A possible structural role of disordered residues. Acta Crystallogr D Biol Crystallogr 1997; 53: 169-178.
  • 48 Chang Y, Mochalkin I, McCance SG. et al. Structure and ligand binding determinants of the recombinant kringle 5 domain of human plasminogen. Biochemistry 1998; 37: 3258-3271.
  • 49 Trexler M, Vali Z, Patthy L. Structure of the omega-aminocarboxylic acid-binding sites of human plasminogen. Arginine 70 and aspartic acid 56 are essential for binding of ligand by kringle 4. J Biol Chem 1982; 257: 7401-7406.
  • 50 Vali Z, Patthy L. The fibrin-binding site of human plasminogen. Arginines 32 and 34 are essential for fibrin affinity of the kringle 1 domain. J Biol Chem 1984; 259: 13690-13694.
  • 51 Fulde M, Rohde M, Hitzmann A. et al. SCM, a novel M-like protein from Streptococcus canis, binds (mini)-plasminogen with high affinity and facilitates bacterial transmigration. Biochem J 2011; 434: 523-535.
  • 52 Fulde M, Rohde M, Polok A. et al. Cooperative plasminogen recruitment to the surface of Streptococcus canis via M protein and enolase enhances bacterial survival. mBio 2013; 12: e00629-12.
  • 53 Sanderson-Smith M, Walker MJ, Ranson M. The Maintenance of High Affinity Plasminogen Binding by Group A Streptococcal Plasminogen-binding M-like Protein Is Mediated by Arginine and Histidine Residues within the a1 and a2 Repeat Domains. J Biol Chem 2006; 281: 25965-25971.
  • 54 Parkkinen J, Hacker J, Korhonen TK. Enhancement of tissue plasminogen activator-catalysed plasminogen activation by Escherichia coli S fimbriae associated with neonatal septicaemia and meningitis. Thromb Haemost 1991; 65: 483-486.
  • 55 DesJardin LE, Boyle MD, Lottenberg R. Group A streptococci bind human plasmin but not other structurally related proteins. Thromb Res 1989; 55: 187-193.