Thromb Haemost 2012; 108(05): 804-811
DOI: 10.1160/TH12-04-0276
Theme Issue Article
Schattauer GmbH

Monocyte function and trafficking in cardiovascular disease

Evangelia Pardali
1   Department Cardiovascular Medicine, University of Münster, Münster, Germany
,
Johannes Waltenberger
1   Department Cardiovascular Medicine, University of Münster, Münster, Germany
› Author Affiliations
Further Information

Publication History

Received: 30 April 2012

Accepted after major revision: 24 July 2012

Publication Date:
29 November 2017 (online)

Summary

Monocytes are key effectors of the immune homeostasis and play a crucial role in (vascular) injury repair. Despite their role in immune defense and tissue repair mechanisms, monocytes are also involved in several pathological conditions such as autoimmune and cardiovascular diseases as well as cancer. This suggests that monocytes can be used as diagnostic and as therapeutic targets. A better understanding and characterisation of monocytes and their function in both physiological and pathological situations is thus of great interest. This review focuses on recent advances on the role of monocytes in cardiovascular diseases and describes the value of monocytes as either disease marker or therapeutic target for (cardio)vascular diseases.

 
  • References

  • 1 Serbina NV, Pamer EG. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 2006; 7: 311-317.
  • 2 Tsou CL, Peters W, Si Y. et al. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest 2007; 117: 902-909.
  • 3 Auffray C, Fogg D, Garfa M. et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007; 317: 666-670.
  • 4 Auffray C, Fogg DK, Narni-Mancinelli E. et al. CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation. J Exp Med 2009; 206: 595-606.
  • 5 Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 2009; 27: 669-692.
  • 6 van Furth R, Cohn ZA. The origin and kinetics of mononuclear phagocytes. J Exp Med 1968; 128: 415-435.
  • 7 Swirski FK, Nahrendorf M, Etzrodt M. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 2009; 325: 612-616.
  • 8 Liu K, Waskow C, Liu X. et al. Origin of dendritic cells in peripheral lymphoid organs of mice. Nat Immunol 2007; 8: 578-583.
  • 9 Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol 2011; 11: 762-774.
  • 10 Ziegler-Heitbrock L, Ancuta P, Crowe S. et al. Nomenclature of monocytes and dendritic cells in blood. Blood 2010; 116: e74-e80.
  • 11 Heine GH, Ortiz A, Massy ZA. et al. Monocyte subpopulations and cardiovascular risk in chronic kidney disease. Nat Rev Nephrol 2012; 8: 362-369.
  • 12 Ziegler-Heitbrock L. The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J Leukoc Biol 2007; 81: 584-592.
  • 13 Ancuta P, Liu KY, Misra V. et al. Transcriptional profiling reveals developmental relationship and distinct biological functions of CD16+ and CD16- monocyte subsets. BMC Genomics 2009; 10: 403.
  • 14 Ancuta P, Rao R, Moses A. et al. Fractalkine preferentially mediates arrest and migration of CD16+ monocytes. J Exp Med 2003; 197: 1701-1707.
  • 15 Weber C, Belge KU, von Hundelshausen P. et al. Differential chemokine receptor expression and function in human monocyte subpopulations. J Leukoc Biol 2000; 67: 699-704.
  • 16 Belge KU, Dayyani F, Horelt A. et al. The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF. J Immunol 2002; 168: 3536-3542.
  • 17 Czepluch FS, Olieslagers S, van Hulten R. et al. VEGF-A-induced chemotaxis of CD16+ monocytes is decreased secondary to lower VEGFR-1 expression. Atherosclerosis 2011; 215: 331-338.
  • 18 Szaflarska A, Baj-Krzyworzeka M, Siedlar M. et al. Antitumor response of CD14+/CD16+ monocyte subpopulation. Exp Hematol 2004; 32: 748-755.
  • 19 Zhao C, Zhang H, Wong WC. et al. Identification of novel functional differences in monocyte subsets using proteomic and transcriptomic methods. J Proteome Res 2009; 8: 4028-4038.
  • 20 Cros J, Cagnard N, Woollard K. et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 2010; 33: 375-386.
  • 21 Zawada AM, Rogacev KS, Rotter B. et al. SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood 2011; 118: e50-e61.
  • 22 Landsman L, Bar-On L, Zernecke A. et al. CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood 2009; 113: 963-972.
  • 23 Krutzik SR, Tan B, Li H. et al. TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells. Nat Med 2005; 11: 653-660.
  • 24 Randolph GJ, Sanchez-Schmitz G, Liebman RM. et al. The CD16(+) (FcgammaRIII(+)) subset of human monocytes preferentially becomes migratory dendritic cells in a model tissue setting. J Exp Med 2002; 196: 517-527.
  • 25 Elsheikh E, Uzunel M, He Z. et al. Only a specific subset of human peripheral-blood monocytes has endothelial-like functional capacity. Blood 2005; 106: 2347-2355.
  • 26 Coffelt SB, Lewis CE, Naldini L. et al. Elusive identities and overlapping phenotypes of proangiogenic myeloid cells in tumors. Am J Pathol 2010; 176: 1564-1576.
  • 27 Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003; 19: 71-82.
  • 28 Kuziel WA, Morgan SJ, Dawson TC. et al. Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2. Proc Natl Acad Sci USA 1997; 94: 12053-12058.
  • 29 Mahad DJ, Trebst C, Kivisakk P. et al. Expression of chemokine receptors CCR1 and CCR5 reflects differential activation of mononuclear phagocytes in pattern II and pattern III multiple sclerosis lesions. J Neuropathol Exp Neurol 2004; 63: 262-273.
  • 30 Tacke F, Alvarez D, Kaplan TJ. et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 2007; 117: 185-194.
  • 31 Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005; 5: 953-964.
  • 32 Qu C, Edwards EW, Tacke F. et al. Role of CCR8 and other chemokine pathways in the migration of monocyte-derived dendritic cells to lymph nodes. J Exp Med 2004; 200: 1231-1241.
  • 33 Sunderkotter C, Nikolic T, Dillon MJ. et al. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 2004; 172: 4410-4417.
  • 34 Nahrendorf M, Swirski FK, Aikawa E. et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 2007; 204: 3037-3047.
  • 35 Carmeliet P, Luttun A. The emerging role of the bone marrow-derived stem cells in (therapeutic) angiogenesis. Thromb Haemost 2001; 86: 289-297.
  • 36 Heil M, Ziegelhoeffer T, Pipp F. et al. Blood monocyte concentration is critical for enhancement of collateral artery growth. Am J Physiol Heart Circ Physiol 2002; 283: H2411-H2419.
  • 37 Waltenberger J. Impaired collateral vessel development in diabetes: potential cellular mechanisms and therapeutic implications. Cardiovasc Res 2001; 49: 554-560.
  • 38 Waltenberger J, Kranz A, Beyer M. Neovascularization in the human heart is associated with expression of VEGF-A and its receptors Flt-1 (VEGFR-1) and KDR (VEGFR-2). Results from cardiomyopexy in ischemic cardiomyopathy. Angiogenesis 1999; 3: 345-351.
  • 39 Waltenberger J, Lange J, Kranz A. Vascular endothelial growth factor-A-induced chemotaxis of monocytes is attenuated in patients with diabetes mellitus: A potential predictor for the individual capacity to develop collaterals. Circulation 2000; 102: 185-190.
  • 40 Autiero M, Waltenberger J, Communi D. et al. Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 2003; 9: 936-943.
  • 41 Waltenberger J. VEGF resistance as a molecular basis to explain the angiogenesis paradox in diabetes mellitus. Biochem Soc Trans 2009; 37: 1167-1170.
  • 42 Dikov MM, Ohm JE, Ray N. et al. Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. J Immunol 2005; 174: 215-222.
  • 43 Fischer C, Jonckx B, Mazzone M. et al. Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 2007; 131: 463-475.
  • 44 Shibuya M. Structure and function of VEGF/VEGF-receptor system involved in angiogenesis. Cell Struct Funct 2001; 26: 25-35.
  • 45 Hirschi KK, Ingram DA, Yoder MC. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol 2008; 28: 1584-1595.
  • 46 Hristov M, Gumbel D, Lutgens E. et al. Soluble CD40 ligand impairs the function of peripheral blood angiogenic outgrowth cells and increases neointimal formation after arterial injury. Circulation 2010; 121: 315-324.
  • 47 Rehman J, Li J, Orschell CM, March KL. Peripheral blood „endothelial progenitor cells“ are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 2003; 107: 1164-1169.
  • 48 Tchaikovski V, Fellbrich G, Waltenberger J. The molecular basis of VEGFR-1 signal transduction pathways in primary human monocytes. Arterioscler Thromb Vasc Biol 2008; 28: 322-328.
  • 49 Pipp F, Heil M, Issbrucker K. et al. VEGFR-1-selective VEGF homologue PlGF is arteriogenic: evidence for a monocyte-mediated mechanism. Circ Res 2003; 92: 378-385.
  • 50 Scholz D, Elsaesser H, Sauer A. et al. Bone marrow transplantation abolishes inhibition of arteriogenesis in placenta growth factor (PlGF) -/- mice. J Mol Cell Cardiol 2003; 35: 177-184.
  • 51 Beck H, Raab S, Copanaki E. et al. VEGFR-1 signaling regulates the homing of bone marrow-derived cells in a mouse stroke model. J Neuropathol Exp Neurol 2010; 69: 168-175.
  • 52 Kami J, Muranaka K, Yanagi Y. et al. Inhibition of choroidal neovascularization by blocking vascular endothelial growth factor receptor tyrosine kinase. Jpn J Ophthalmol 2008; 52: 91-98.
  • 53 Murakami M, Iwai S, Hiratsuka S. et al. Signaling of vascular endothelial growth factor receptor-1 tyrosine kinase promotes rheumatoid arthritis through activation of monocytes/macrophages. Blood 2006; 108: 1849-1856.
  • 54 Zhao Q, Egashira K, Hiasa K. et al. Essential role of vascular endothelial growth factor and Flt-1 signals in neointimal formation after periadventitial injury. Arterioscler Thromb Vasc Biol 2004; 24: 2284-2289.
  • 55 Voo S, Eggermann J, Dunaeva M. et al. Enhanced functional response of CD133+ circulating progenitor cells in patients early after acute myocardial infarction. Eur Heart J 2008; 29: 241-250.
  • 56 Steffens S, Montecucco F, Mach F. The inflammatory response as a target to reduce myocardial ischaemia and reperfusion injury. Thromb Haemost 2009; 102: 240-247.
  • 57 Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med 2007; 357: 1121-1135.
  • 58 Swirski FK, Libby P, Aikawa E. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest 2007; 117: 195-205.
  • 59 Swirski FK, Weissleder R, Pittet MJ. Heterogeneous in vivo behavior of monocyte subsets in atherosclerosis. Arterioscler Thromb Vasc Biol 2009; 29: 1424-1432.
  • 60 Tsujioka H, Imanishi T, Ikejima H. et al. Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction. J Am Coll Cardiol 2009; 54: 130-138.
  • 61 Tsujioka H, Imanishi T, Ikejima H. et al. Post-reperfusion enhancement of CD14(+)CD16(-) monocytes and microvascular obstruction in ST-segment elevation acute myocardial infarction. Circ J 2010; 74: 1175-1182.
  • 62 Hristov M, Leyendecker T, Schuhmann C. et al. Circulating monocyte subsets and cardiovascular risk factors in coronary artery disease. Thromb Haemost 2010; 104: 412-414.
  • 63 Hristov M, Weber C. Differential role of monocyte subsets in atherosclerosis. Thromb Haemost 2011; 106: 757-762.
  • 64 Lee WW, Marinelli B, van der Laan AM. et al. PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol 2012; 59: 153-163.
  • 65 Leuschner F, Rauch PJ, Ueno T. et al. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J Exp Med 2012; 209: 123-137.
  • 66 Libby P. The interface of atherosclerosis and thrombosis: basic mechanisms. Vasc Med 1998; 3: 225-229.
  • 67 Libby P. Changing concepts of atherogenesis. J Intern Med 2000; 247: 349-358.
  • 68 Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature 2011; 473: 317-325.
  • 69 Ross R, Faggiotto A, Bowen-Pope D. et al. The role of endothelial injury and platelet and macrophage interactions in atherosclerosis. Circulation 1984; 70 III 77-82.
  • 70 Qiao JH, Tripathi J, Mishra NK. et al. Role of macrophage colony-stimulating factor in atherosclerosis: studies of osteopetrotic mice. Am J Pathol 1997; 150: 1687-1699.
  • 71 Rajavashisth T, Qiao JH, Tripathi S. et al. Heterozygous osteopetrotic (op) mutation reduces atherosclerosis in LDL receptor-deficient mice. J Clin Invest 1998; 101: 2702-2710.
  • 72 Robbins CS, Chudnovskiy A, Rauch PJ. et al. Extramedullary hematopoiesis generates Ly-6C(high) monocytes that infiltrate atherosclerotic lesions. Circulation 2012; 125: 364-374.
  • 73 Combadiere C, Potteaux S, Rodero M. et al. Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 2008; 117: 1649-1657.
  • 74 Lesnik P, Haskell CA, Charo IF. Decreased atherosclerosis in CX3CR1-/- mice reveals a role for fractalkine in atherogenesis. J Clin Invest 2003; 111: 333-340.
  • 75 Saederup N, Chan L, Lira SA. et al. Fractalkine deficiency markedly reduces macrophage accumulation and atherosclerotic lesion formation in CCR2-/- mice: evidence for independent chemokine functions in atherogenesis. Circulation 2008; 117: 1642-1648.
  • 76 Leuschner F, Dutta P, Gorbatov R. et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol 2011; 29: 1005-1010.
  • 77 Tchaikovski V, Olieslagers S, Bohmer FD, Waltenberger J. Diabetes mellitus activates signal transduction pathways resulting in vascular endothelial growth factor resistance of human monocytes. Circulation 2009; 120: 150-159.
  • 78 Dunaeva M, Voo S, van Oosterhoud C, Waltenberger J. Sonic hedgehog is a potent chemoattractant for human monocytes: diabetes mellitus inhibits Sonic hedgehog-induced monocyte chemotaxis. Basic Res Cardiol 2010; 105: 61-71.
  • 79 Olieslagers S, Pardali E, Tchaikovski V. et al. TGF-β1/ALK5-induced monocyte migration involves PI3K and p38 pathways and is not negatively affected by diabetes mellitus. Cardiovasc Res 2011; 91: 510-518.
  • 80 Czepluch FS, Bergler A, Waltenberger J. Hypercholesterolaemia impairs monocyte function in CAD patients. J Intern Med 2007; 261: 201-204.
  • 81 Stadler N, Eggermann J, Voo S. et al. Smoking-induced monocyte dysfunction is reversed by vitamin C supplementation in vivo. Arterioscler Thromb Vasc Biol 2007; 27: 120-126.
  • 82 Berg KE, Ljungcrantz I, Andersson L. et al. Elevated CD14++CD16- monocytes predict cardiovascular events. Circ Cardiovasc Genet 2012; 5: 122-131.
  • 83 Heine GH, Ulrich C, Seibert E. et al. CD14(++)CD16+ monocytes but not total monocyte numbers predict cardiovascular events in dialysis patients. Kidney Int 2008; 73: 622-629.
  • 84 Rogacev KS, Seiler S, Zawada AM. et al. CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease. Eur Heart J 2011; 32: 84-92.
  • 85 Urra X, Villamor N, Amaro S. et al. Monocyte subtypes predict clinical course and prognosis in human stroke. J Cereb Blood Flow Metab 2009; 29: 994-1002.
  • 86 Libby P, Nahrendorf M, Weissleder R. Molecular imaging of atherosclerosis: a progress report. Tex Heart Inst J 2010; 37: 324-327.
  • 87 Devaraj NK, Keliher EJ, Thurber GM. et al. 18F labeled nanoparticles for in vivo PET-CT imaging. Bioconjug Chem 2009; 20: 397-401.
  • 88 Nahrendorf M, Zhang H, Hembrador S. et al. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 2008; 117: 379-387.
  • 89 Lipinski MJ, Frias JC, Amirbekian V. et al. Macrophage-specific lipid-based nanoparticles improve cardiac magnetic resonance detection and characterization of human atherosclerosis. JACC Cardiovasc Imaging 2009; 2: 637-647.
  • 90 Nahrendorf M, Sosnovik D, Chen JW. et al. Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation 2008; 117: 1153-1160.
  • 91 Trivedi RA, Mallawarachi C, JM UK-I, Graves MJ. et al. Identifying inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to label plaque macrophages. Arterioscler Thromb Vasc Biol 2006; 26: 1601-1606.
  • 92 Rogers IS, Nasir K, Figueroa AL. et al. Feasibility of FDG imaging of the coronary arteries: comparison between acute coronary syndrome and stable angina. JACC Cardiovasc Imaging 2010; 3: 388-397.
  • 93 Rudd JH, Narula J, Strauss HW. et al. Imaging atherosclerotic plaque inflammation by fluorodeoxyglucose with positron emission tomography: ready for prime time?. J Am Coll Cardiol 2010; 55: 2527-2535.
  • 94 Wykrzykowska J, Lehman S, Williams G. et al. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med 2009; 50: 563-568.
  • 95 Montet-Abou K, Daire JL, Hyacinthe JN. et al. In vivo labelling of resting monocytes in the reticuloendothelial system with fluorescent iron oxide nanoparticles prior to injury reveals that they are mobilized to infarcted myocardium. Eur Heart J 2010; 31: 1410-1420.
  • 96 Oude Engberink RD, van der Pol SM, Dopp EA. et al. Comparison of SPIO and USPIO for in vitro labeling of human monocytes: MR detection and cell function. Radiology 2007; 243: 467-474.
  • 97 Swirski FK, Wildgruber M, Ueno T. et al. Myeloperoxidase-rich Ly-6C+ myeloid cells infiltrate allografts and contribute to an imaging signature of organ rejection in mice. J Clin Invest 2010; 120: 2627-2634.