Thromb Haemost 2012; 107(06): 1012-1013
DOI: 10.1160/TH12-04-0264
Invited Editorial Focus
Schattauer GmbH

Plasma kallikrein: Novel functions for an old protease

Thomas Renné
1   Clinical Chemistry, Department of Molecular Medicine and Surgery and Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
,
András Gruber
2   Departments of Biomedical Engineering and Medicine, Oregon Health and Science University, Portland, Oregon, USA
› Author Affiliations
Further Information

Publication History

Received: 26 April 2012

Accepted: 26 April 2012

Publication Date:
29 November 2017 (online)

 

 
  • References

  • 1 Bird JE, Smith P, Wang X. et al. Effects of Plasma Kallikrein Deficiency on Haemostasis and Thrombosis in Mice: Murine Ortholog of Fletcher Trait. Thromb Haemost 2012; 107: 1141-1150.
  • 2 Renne T. The procoagulant and proinflammatory plasma contact system. Semin Immunopathol 2012; 34: 31-41.
  • 3 Muller F, Renne T. Novel roles for factor XII-driven plasma contact activation system. Curr Opin Hematol 2008; 15: 516-521.
  • 4 Leeb-Lundberg LM, Marceau F, Muller-Esterl W. et al. Classification of the Kinin Receptor Family: from Molecular Mechanisms to Pathophysiological Consequences. Pharmacol Rev 2005; 57: 27-77.
  • 5 Liu J, Gao BB, Clermont AC. et al. Hyperglycemia-induced cerebral hematoma expansion is mediated by plasma kallikrein. Nat Med 2011; 17: 206-210.
  • 6 Saito H. Studies on Fletcher trait and Fitzgerald trait. A rare chance to disclose body's defense reactions against injury. Thromb Haemost 2010; 104: 867-874.
  • 7 Chung DW, Fujikawa K, McMullen BA. et al. Human plasma prekallikrein, a zymogen to a serine protease that contains four tandem repeats. Biochemistry 1986; 25: 2410-2417.
  • 8 McMullen BA, Fujikawa K, Davie EW. Location of the disulfide bonds in human plasma prekallikrein: the presence of four novel apple domains in the amino-terminal portion of the molecule. Biochemistry 1991; 30: 2050-2056.
  • 9 Pauer HU, Renne T, Hemmerlein B. et al. Targeted deletion of murine coagulation factor XII gene-a model for contact phase activation in vivo. Thromb Haemost 2004; 92: 503-508.
  • 10 Iwaki T, Cruz-Topete D, Castellino FJ. A complete factor XII deficiency does not affect coagulopathy, inflammatory responses, and lethality, but attenuates early hypotension in endotoxemic mice. J Thromb Haemost 2008; 6: 1993-1995.
  • 11 Renne T, Pozgajova M, Gruner S. et al. Defective thrombus formation in mice lacking coagulation factor XII. J Exp Med 2005; 202: 271-281.
  • 12 Wang X, Smith PL, Hsu MY. et al. Effects of factor XI deficiency on ferric chloride-induced vena cava thrombosis in mice. J Thromb Haemost 2006; 4: 1982-1988.
  • 13 Cheng Q, Tucker EI, Pine MS. et al. A role for factor XIIa-mediated factor XI activation in thrombus formation in vivo. Blood 2010; 116: 3981-3989.
  • 14 Merkulov S, Zhang WM, Komar AA. et al. Deletion of murine kininogen gene 1 (mKng1) causes loss of plasma kininogen and delays thrombosis. Blood 2008; 111: 1274-1281.
  • 15 Muller F, Gailani D, Renne T. Factor XI and XII as antithrombotic targets. Curr Opin Hematol 2011; 18: 349-355.
  • 16 Seligsohn U. Factor XI deficiency in humans. J Thromb Haemost 2009; 7 (Suppl. 01) 84-87.
  • 17 Girolami A, Scarparo P, Candeo N. et al. Congenital prekallikrein deficiency. Expert Rev Hematol 2010; 3: 685-695.
  • 18 Weitz JI. Factor Xa and thrombin as targets for new oral anticoagulants. Thromb Res 2011; 127 (Suppl. 02) S5-S12.