Thromb Haemost 2007; 98(01): 105-108
DOI: 10.1160/TH07-04-0274
Anniversary Issue Contribution
Schattauer GmbH

Update on antithrombin I (fibrin)

Michael W. Mosesson
1   The Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, USA
› Author Affiliations
Further Information

Publication History

Received 13 April 2007

Accepted 11 May 2007

Publication Date:
29 November 2017 (online)

Summary

Antithrombin I (fibrin) is an important inhibitor of thrombin generation that functions by sequestering thrombin in the forming fibrin clot, and also by reducing the catalytic activity of fibrinbound thrombin. Thrombin binding to fibrin takes place at two classes of non-substrate sites: 1) in the fibrin E domain (two per molecule) through interaction with thrombin exosite 1; 2) at a single site on each γ’ chain through interaction with thrombin exosite 2. The latter reaction results in allosteric changes that down-regulate thrombin catalytic activity. Antithrombin I deficiency (afibrinogenemia), defective thrombin binding to fibrin (antithrombin I defect) found in certain dysfibrinogenemias (e.g. fibrinogen Naples 1), or a reduced plasma γ’ chain content (reduced antithrombin I activity), predispose to intravascular thrombosis.

 
  • References

  • 1 Fenton II JW, Olson TA, Zabinski MP. et al. Anion-binding exosite of human a-thrombin and fibrin(ogen) recognition. Biochemistry 1988; 27: 7106-7112.
  • 2 Stubbs MT, Bode W. A player of many parts: The spotlight falls on thrombin’s structure. Thromb Res 1993; 69: 1-58.
  • 3 Howell WH. The preparation and properties of thrombin, together with observations on antithrombin and prothrombin. Am J Physiol 1910; 26: 453-473.
  • 4 Seegers WH, Nieft M, Loomis EC. Note on the adsorption of thrombin on fibrin. Science 1945; 101: 520-521.
  • 5 Seegers WH. Multiple protein interactions as exhibited by the blood-clotting mechanism. J Phys Colloid Chem 1947; 51: 198-206.
  • 6 Seegers WH, Johnson JF, Fell C. An antithrombin reaction related to prothrombin activation. Am J Physiol 1954; 176: 97-103.
  • 7 de Bosch NB, Mosesson MW, Ruiz-Sáez A. et al. Inhibition of thrombin generation in plasma by fibrin formation (AntithrombinI). Thromb Haemost 2002; 88: 253-258.
  • 8 Mosesson MW. Antithrombin I. Inhibition of thrombin generation in plasma by fibrin formation. Thromb Haemost 2003; 89: 9-12.
  • 9 Liu CY, Nossel HL, Kaplan KL. Defective thrombin binding by abnormal fibrin associated with recurrent thrombosis. Thromb Haemost 1979; 42: 79 (abstract).
  • 10 Meh DA, Siebenlist KR, Mosesson MW. Identification and characterization of the thrombin binding sites on fibrin. J Biol Chem 1996; 271: 23121-23125.
  • 11 Mosesson MW, Finlayson JS, Umfleet RA. Human fibrinogen heterogeneities. III. Identification of g chain variants. J Biol Chem 1972; 247: 5223-5227.
  • 12 Wolfenstein-Todel C, Mosesson MW. Carboxy-terminal amino acid sequence of ahuman fibrinogen γ chain variant (γ’). Biochemistry 1981; 20: 6146-6149.
  • 13 Pechik I, Madrazo J, Mosesson MW. et al. Crystal structure of the complex between thrombin and the central “E“region of fibrin. Proc Natl Acad Sci USA 2004; 101: 2718-2723.
  • 14 Pospisil CH, Stafford AR, Fredenburgh JC. et al. Evidence that both exosites on thrombin participate in its high affinity interaction with fibrin. J Biol Chem 2003; 278: 21584-21591.
  • 15 Lovely RS, Moaddel M, Farrell DH. Fibrinogen γ’ chain binds thrombin exosite II. J Thromb Haemost 2003; 1: 124-131.
  • 16 Pineda AO, Chen ZW, Marino F. et al. Crystal structure of thrombin in complex with fibrinogen gamma’ peptide. Biophys Cem 2007; 25: 556-559.
  • 17 Meh DA, Siebenlist KR, Brennan SO. et al. The amino acid sequences in fibrin responsible for high affinity thrombin binding. Thromb Haemost 2001; 85: 470-474.
  • 18 Meh DA, Mosesson MW, Siebenlist KR. et al. Fibrinogen Naples I (Bb A68T) non-substrate thrombin binding capacities. Thromb Res 2001; 103: 63-73.
  • 19 Siebenlist KR, Mosesson MW, Hernandez I. et al. Studies on the basis for the properties of fibrin produced from fibrinogen containing g’ chains. Blood 2005; 106: 2730-2736.
  • 20 Di Cera E, Dang QD, Ayala YM. Molecular mechanisms of thrombin function. Cell Mol Life Sci 1997; 53: 701-730.
  • 21 Esmon CT. The roles of protein C and thrombomodulin in the regulation of blood coagulation. J Biol Chem 1989; 264: 4743-4746.
  • 22 Cooper AV, Standeven KF, Ariens RA. Fibrinogen gamma-chain splice variant gamma‘alters fibrin formation and structure. Blood 2003; 102: 535-540.
  • 23 Fredenburgh JC, Stafford AR, Weitz JI. Evidence for allosteric linkage between exosites 1 and 2 of thrombin. J Biol Chem 1997; 272: 25493-25499.
  • 24 Bock LC, Griffin LC, Latham JA. et al. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 1992; 355: 564-566.
  • 25 Liaw PC, Fredenburgh JC, Stafford AR. et al. Localization of the thrombin-binding domain on prothrombin fragment 2. J Biol Chem 1998; 273: 8932-8939.
  • 26 Li CQ, Vindigni A, Sadler JE. et al. Platelet glycoprotein Ib alpha binds to thrombin anion-binding exosite II inducing allosteric changes in the activity of thrombin. J Biol Chem 2001; 276: 6161-6168.
  • 27 Colwell NS, Blinder MA, Tsiang M. et al. Allosteric effects of a monoclonal antibody against thrombin exosite II. Biochemistry 1998; 37: 15057-15065.
  • 28 Tasset DM, Kubik MF, Steiner W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J Mol Biol 1997; 272: 688-698.
  • 29 Credo RB, Curtis CG, Lorand L. Ca2+-related regulatory function of fibrinogen. Proc Natl Acad Sci USA 1978; 75: 4234-4237.
  • 30 Janus TJ, Lewis SD, Lorand L. et al. Promotion of thrombin-catalyzed activation of factor XIII by fibrinogen. Biochemistry 1983; 22: 6268-6272.
  • 31 Greenberg CS, Miraglia CC, Rickles FR. et al. Cleavage of blood coagulation factor XIII and fibrinogen by thrombin during in vitro clotting. J Clin Invest 1985; 75: 1463-1470.
  • 32 Naski MC, Lorand L, Shafer JA. Characterization of the kinetic pathway for fibrin promotion of alphathrombin-catalyzed activation of plasmafactor XIII. Biochemistry 1991; 30: 934-941.
  • 33 Francis CW, Kraus DH, Marder VJ. Structural and chromatographic heterogeneity of normal plasma fibrinogen associated with the presence of three gamma-chain types with distinct molecular weights. Biochim Biophys Acta 1983; 744: 155-164.
  • 34 Francis CW, Keele EM, Marder VJ. Purification of three gamma-chains with different molecular weights from normal human plasma fibrinogen. Biochim Biophys Acta 1984; 797: 328-335.
  • 35 Francis CW, Muller E, Henschen A. et al. Carboxy-terminal amino acid sequences of two large variant forms of the human plasma fibrinogen? chain. Proc Natl Acad Sci USA 1988; 85: 3358-3362.
  • 36 Mosesson MW, Hernandez I, Raife TJ. et al. Plasma fibrinogen gamma’ chain content in the thrombotic microangiopathy syndrome. J Thromb Haemost 2007; 5: 62-69.
  • 37 Koopman J, Haverkate F, Lord ST. et al. Molecular basis of fibrinogen Naples associated with defective throm binbinding and thrombophilia. Homozygous substitution of B beta 68 Ala-->Thr. J Clin Invest 1992; 90: 238-244.
  • 38 Di Minno G, Martinez J, Cirillo F. et al. A role for platelets and thrombin in the juvenile stroke of two siblings with defective thrombin-absorbing capacity of fibrin(ogen). Arterioscl Thromb 1991; 11: 785-796.
  • 39 Caen J, Faur Y, Inceman S. et al. Nécrose ischémique bilatérale dans un cas de grande hypofibrinogénémie congénitale. Nouv Rev FrHématol 1964; 4: 321-326.
  • 40 Marchal G, Duhamel G, Samama M. et al. Thrombose massive des vaisseaux d‘un membre au cours d‘une hyp of ibrinémie congénitale. Hémostase 1964; 4: 81-89.
  • 41 Nilsson IM, Niléhn J-E, Cronberg S. et al. Hypofibrinogenemia and massive thrombosis. Acta Medica Scand 1966; 180: 65-76.
  • 42 Ingram GI, McBrien DJ, Spencer H. Fatal pulmonary embolism in congenital fibrinopenia. Acta Haematol 1966; 35: 56-62.
  • 43 Mackinnon HH, Fekete JF. Congenital afibrinogenemia: vascular changes and multiple thrombosis induced by fibrinogen infusionsand contraceptive medication. Can Med Assoc J 1971; 140: 597-599.
  • 44 Cronin C, Fitzpatrick D, Temperly I. Multiple pulmonary emboli in apatient with afibrinogenaemia. Acta Haematol 1988; 7: 53-54.
  • 45 Drai E, Taillan B, Schneider S. et al. Thrombose portale révélatrice d‘une afibrinogénémie congénitale. La Presse Médicale 1992; 21: 1820-1821.
  • 46 Chafa O, Chellali T, Sternberg C. et al. Severe hypofibrinogenemia associated with bilateral ischemic necrosis of toes and fingers. Blood Coag Fibrinolysis 1995; 6: 549-552.
  • 47 Dupuy E, Soria C, Molho P. et al. Embolized ischemic lesions of toes in an afibrinogenemic patient: possible relevance to in vivo circulating thrombin. Thromb Res 2001; 102: 211-219.
  • 48 de Bosch N, Sáez A, Soria C. et al. Coagulation profile in afibrinogenemia. Thromb Haemost. 1997 (Suppl): 625 (abstract).
  • 49 Korte W, Feldges A. Increased prothrombin activation in a patient with congenital afibrinogenemia is reversible by fibrinogen substitution. Clin Invest 1994; 72: 396-398.
  • 50 Ni H, Denis CV, Subbarao S. et al. Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J Clin Invest 2000; 106: 385-392.
  • 51 Drouet L, Paolucci F, Pasqualini N. et al. Plasma gamma’/gamma fibrinogen ratio, amarker of arterial thrombotic activity: a new potential cardiovascular risk factor?. Blood Coagul Fibrinolysis 1999; 10 (Suppl. 01) S35-S39.
  • 52 Lovely RS, Falls LA, Al Mondhiry HA. et al. Association of γA/γ‘fibrinogen levels and coronary artery disease. Thromb Haemost 2002; 88: 26-31.
  • 53 Uitte de Willige S, de Visser MC, Houwing-Duistermaat JJ. et al. Genetic variation in the fibrinogen gamma gene increases therisk of deep venous thrombosis by reducing plasma fibrinogen γ‘levels. Blood 2005; 106: 4176-4183.
  • 54 vander Meer FJ, Koster T, Vandenbroucke JP. et al. The Leiden Thrombophilia Study (LETS). Thromb Haemost 1997; 78: 631-635.
  • 55 Manilla MN, Lovely RS, Kazmierczak SC. et al. Elevated plasma fibrinogen g’ concentration is associated with myocardial infarction: effects of variationin fibrinogen genes and environmental factors. J Thromb Haemost 2007; 5: 766-733.
  • 56 Carter WJ, Cama E, Huntington JA. Crystal structure of thrombin bound to heparin. J Biol Chem 2005; 280: 2745-2749.
  • 57 Becker DL, Fredenburgh JC, Stafford AR. et al. Exosites 1 and 2 are essential for protection of fibrinbound thrombin from heparin-catalyzed inhibition by antithrombin and heparin cofactor II. J Biol Chem 1999; 274: 6226-6233.