Thromb Haemost 2006; 95(06): 920-921
DOI: 10.1160/TH06-05-0239
Editorial Focus
Schattauer GmbH

Is Na+ a coagulation factor?

Michael J. Page
1   Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
,
Enrico Di Cera
1   Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
› Author Affiliations
Financial support: This work was supported in part by NIH research grants HL49413, HL58141 and HL73813.
Further Information

Publication History

Received 04 May 2006

Accepted 04 May 2006

Publication Date:
02 December 2017 (online)

 

 
  • References

  • 1 Page MJ, Di Cera E. Role of Na+ and K+ in enzyme function. Physiol Rev. 2006 in press.
  • 2 Orthner CL, Kosow DP. The effect of metal ions on the amidolytic acitivity of human factor Xa (activated Stuart-Prower factor). Arch Biochem Biophys 1978; 185: 400-6.
  • 3 Orthner CL, Kosow DP. Evidence that human alpha-thrombin is a monovalent cation-activated enzyme. Arch Biochem Biophys 1980; 202: 63-75.
  • 4 Steiner SA, Amphlett GW, Castellino FJ. Stimulation of the amidase and esterase activity of activated bovine plasma protein C by monovalent cations. Biochem Biophys Res Commun 1980; 94: 340-7.
  • 5 Steiner SA, Castellino FJ. Kinetic mechanism for stimulation by monovalent cations of the amidase activity of the plasma protease bovine activated protein C. Biochemistry 1985; 24: 609-17.
  • 6 Wells CM, Di Cera E. Thrombin is a Na(+)-activated enzyme. Biochemistry 1992; 31: 11721-30.
  • 7 Di Cera E, Guinto ER, Vindigni A. et al. The Na+ binding site of thrombin. J Biol Chem 1995; 270: 22089-92.
  • 8 Dang OD, Vindigni A, Di Cera E. An allosteric switch controls the procoagulant and anticoagulant activities of thrombin. Proc Natl Acad Sci USA 1995; 92: 5977-81.
  • 9 Ayala YM, Cantwell AM, Rose T. et al. Molecular mapping of thrombin-receptor interactions. Proteins 2001; 45: 107-16.
  • 10 Myles T, Yun TH, Hall SW. et al. An extensive interaction interface between thrombin and factor V is required for factor V activation. J Biol Chem 2001; 276: 25143-9.
  • 11 Nogami K, Zhou Q, Myles T. et al. Exosite-interactive regions in the A1 and A2 domains of factor VIII facilitate thrombin-catalyzed cleavage of heavy chain. J Biol Chem 2005; 280: 18476-87.
  • 12 Yun TH, Baglia FA, Myles T. et al. Thrombin activation of factor XI on activated platelets requires the interaction of factor XI and platelet glycoprotein Ib alpha with thrombin anion-binding exositesI and II, respectively. J Biol Chem 2003; 278: 48112-9.
  • 13 Dang QD, Di Cera E. Residue 225 determines the Na(+)-induced allosteric regulation of catalytic activity in serine proteases. Proc Natl Acad Sci USA 1996; 93: 10653-6.
  • 14 Gopalakrishna K, Rezaie AR. The influence of sodium ion binding on factor IXa activity. Thromb Haemost 2006; 95: 936-41.
  • 15 Rezaie AR, He X. Sodium binding site of factor Xa: role of sodium in the prothrombinase complex. Biochemistry 2000; 39: 1817-25.
  • 16 Schmidt AE, Stewart JE, Mathur A. et al. Na+ site in blood coagulation factor IXa: effect on catalysis and factor VIIIa binding. J Mol Biol 2005; 350: 78-91.
  • 17 Monnaie D, Arosio D, Griffon N. et al. Identification of a binding site for quaternary amines in factor Xa. Biochemistry 2000; 39: 5349-54.
  • 18 Underwood MC, Zhong D, Mathur A. et al. Thermodynamic linkage between the S1 site, the Na+ site, and the Ca2+ site in the protease domain of human coagulation factor xa. Studies on catalytic efficiency and inhibitor binding. J Biol Chem 2000; 275: 36876-84.
  • 19 Camire RM. Prothrombinase assembly and S1 site occupation restore the catalytic activity of FXa impaired by mutation at the sodium-binding site. J Biol Chem 2002; 277: 37863-70.
  • 20 Petrovan RJ, Ruf W. Role of residue Phe225 in the cofactor-mediated, allosteric regulation of the serine protease coagulation factor VIIa. Biochemistry 2000; 39: 14457-63.
  • 21 Pineda AO, Carrell CJ, Bush LA. et al. Molecular dissection of Na+ binding to thrombin. J Biol Chem 2004; 279: 31842-53.
  • 22 Di Cera E. Thrombin interactions. Chest 2003; 124: 11S-17S.
  • 23 Mann KG. Thrombin formation. Chest 2003; 124: 4S-10S.
  • 24 Adrogue HJ, Madias NE. Hypernatremia. N Engl J Med 2000; 342: 1493-9.
  • 25 Adrogue HJ, Madias NE. Hyponatremia. N Engl J Med 2000; 342: 1581-9.
  • 26 Grant PJ, Tate GM, Hughes JR. Does hypernatraemia promote thrombosis?. Thromb Res 1985; 40: 393-9.
  • 27 Almond CS, Shin AY, Fortescue EB. et al. Hyponatremia among runners in the Boston Marathon. N Engl J Med 2005; 352: 1550-6.
  • 28 Degen SJ, McDowell SA, Sparks LM. et al. Prothrombin Frankfurt: a dysfunctional prothrombin characterized by substitution of Glu-466 by Ala. Thromb Haemost 1995; 73: 203-9.
  • 29 Miyata T, Aruga R, Umeyama H. et al. Prothrombin Salakta: substitution of glutamic acid-466 by alanine reduces the fibrinogen clotting activity and the esterase activity. Biochemistry 1992; 31: 7457-62.
  • 30 Henriksen RA, Dunham CK, Miller LD. et al. Prothrombin Greenville, Arg517-->Gln, identified in an individual heterozygous for dysprothrombinemia. Blood 1998; 91: 2026-31.
  • 31 Sun WY, Smirnow D, Jenkins ML. et al. Prothrombin Scranton: substitution of an amino acid residue involved in the binding of Na+ (LYS-556 to THR) leads to dysprothrombinemia. Thromb Haemost 2001; 85: 651-4.
  • 32 Stanchev H, Philips M, Villoutreix BO. et al. Prothrombin deficiency caused by compound heterozigosity for two novel mutations in the prothrombin gene associated with a bleeding tendency. Thromb Haemost 2006; 95: 195-8.
  • 33 Rouy S, Vidaud D, Alessandri JL. et al. Prothrombin Saint-Denis: a natural variant with a point mutation resulting in Asp to Glu substitution at position 552 in prothrombin. Br J Haematol 2006; 132: 770-3.
  • 34 Bush LA, Nelson RW, Di Cera E. Murine thrombin lacks Na+ activation but retains high catalytic activity. J Biol Chem 2006; 281: 7183-8.