Thromb Haemost 2005; 94(02): 347-361
DOI: 10.1160/TH05-02-0106
Theme Issue Article
Schattauer GmbH

The transcriptional response of human endothelial cells to infection with Bartonella henselae is dominated by genes controlling innate immune responses, cell cycle, and vascular remodelling

Michaela Dehio
1   Division of Molecular MicrobiolBiozentrum, ogy, University of Basel, Basel, Switzerland
,
Maxime Québatte
1   Division of Molecular MicrobiolBiozentrum, ogy, University of Basel, Basel, Switzerland
,
Stefan Foser
2   Roche Center for Medical Genomics, F. Hoffmann-La Roche, Ltd, Basel, Switzerland
,
Ulrich Certa
2   Roche Center for Medical Genomics, F. Hoffmann-La Roche, Ltd, Basel, Switzerland
› Author Affiliations
Financial support: This work was supported by the Swiss National Science Foundation grant 3100–061777.
Further Information

Publication History

Received: 11 February 2005

Accepted after major revision: 23 June 2005

Publication Date:
05 December 2017 (online)

Summary

The bacterial pathogen Bartonella henselae (Bh) is for respona sible broad range of clinical manifestations, including the formation of vascular tumours as the result of pathogen-triggered vasoproliferation. In vitro, the interaction of Bh with human umbilical vein endothelial cells (Huvec) involves (i) cytoskeletal rearrangements in conjunction with bacterial internalization, (ii) nuclear factor κB (NFκB)-dependent proinflammatory activation, (iii) the inhibition of apoptosis, and (iv) the modulation of angiogenic properties such as proliferation, migration, and tubular differentiation. To study the transcriptional signature of these pathogen- triggered changes of Huvec, we performed transcriptional profiling with Affymetrix U133 GeneChips. At 6 h or 30 h of infection, a total of 706 genes displayed a clear and statistically significant change of expression (>2.5-fold, t-test p-value<0.05). These included 314 up-regulated genes dominated by the innate immune response. The gene list comprises subsets of tumour necrosis factor α (TNFα, 99 genes) and interferon α (IFNα, 30 genes) inducible genes, which encode components of the NF-κB-dependent proinflammatory response and the type I IFN-dependent anti-infective response, respectively. The remaining set of 197 up-regulated genes mirrors other cellular changes induced by Bh, in particular proliferation and proangiogenic activation. The set of 362 down-regulated genes includes 41TNFα- or IFNα-suppressible genes, and 52 genes involved in cell cycle control or progression. This comprehensive analysis of Bh-triggered changes of the Huvec transcriptome identified candidate genes putatively involved in controlling innate immune responses, cell cycle, and vascular remodelling, and may thus provide the basis for functional studies of the molecular mechanisms underlying these pathogen-induced cellular processes.

 
  • References

  • 1 Dehio C. Molecular and cellular basis of Bartonella pathogenesis. Annu Rev Microbiol 2004; 58: 365-90.
  • 2 Dehio C. Recent progress in understanding Bartonella-induced vascular proliferation. Curr Opin Microbiol 2003; 6: 61-5.
  • 3 Kempf VA, Volkmann B, Schaller M. et al. Evidence of a leading role for VEGF in Bartonella henselae-induced endothelial cell proliferations. Cell Microbiol 2001; 3: 623-32.
  • 4 Resto-Ruiz SI, Schmiederer M, Sweger D. et al. Induction of a potential paracrine angiogenic loop between human THP-1 macrophages and human microvascular endothelial cells during Bartonella henselae infection. Infect Immun 2002; 70: 4564-70.
  • 5 Schmid MC, Schulein R, Dehio M. et al. The VirB type IV secretion system of Bartonella henselae me- diates invasion, proinflammatory activation and antiapoptotic protection of endothelial cells. Mol Microbiol 2004; 52: 81-92.
  • 6 Kirby JE. In vitro model of Bartonella henselae-Induced Angiogenesis. Infect Immun 2004; 72: 7315-7.
  • 7 Conley T, Slater L, Hamilton K. Rochalimaea species stimulate human endothelial cell proliferation and migration in vitro . J Lab Clin Med 1994; 124: 521-8.
  • 8 Kirby JE, Nekorchuk DM. Bartonella-associated endothelial proliferation depends on inhibition of apoptosis. Proc Natl Acad Sci U S A 2002; 99: 4656-61.
  • 9 Dehio C, Meyer M, Berger J. et al. Interaction of Bartonella henselae with endothelial cells results in bacterial aggregation on the cell surface and the subsequent engulfment and internalisation of the bacterial aggregate by a unique structure, the invasome. J Cell Sci 1997; 110: 2141-54.
  • 10 Riess T, Andersson SG, Lupas A. et al. Bartonella adhesin A mediates a proangiogenic host cell response. J Exp Med 2004; 200: 1267-78.
  • 11 Kempf VA, Lebiedziejewski M, Alitalo K. et al. Activation of HIF-1 in bacillary angiomatosis: evidence for a role of HIF-1 in bacterial infections. Circulation 2005; 111: 1054-62.
  • 12 Rhomberg TA, Karlberg O, Mini T. et al. Proteomic analysis of the sarcosine-insoluble outer membrane fraction of the bacterial pathogen Bartonella henselae . Proteomics 2004; 4: 3021-33.
  • 13 Schulein R, Guye P, Rhomberg TA. et al. A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells. Proc Natl Acad Sci U S A 2005; 102: 856-61.
  • 14 Bryant PA, Venter D, Robins-Browne R. et al. Chips with everything: DNA microarrays in infectious diseases. The Lancet Infectious Diseases 2004; 4: 100-11.
  • 15 Eisen MB, Spellman PT, Brown PO. et al. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998; 95: 14863-8.
  • 16 Fuhrmann O, Arvand M, Gohler A. et al. Bartonella henselae induces NF-kappaB-dependent upregulation of adhesion molecules in cultured human endothelial cells: possible role of outer membrane proteins as pathogenic factors. Infect Immun 2001; 69: 5088-97.
  • 17 Park PJ, Cao YA, Lee SY. et al. Current issues for DNA microarrays: platform comparison, double linear amplification, and universal RNA reference. J Biotechnol 2004; 112: 225-45.
  • 18 Decker T, Stockinger S, Karaghiosoff M. et al. IFNs and STATs in innate immunity to microorganisms. J Clin Invest 2002; 109: 1271-7.
  • 19 Bogdan C. The function of type I interferons in antimicrobial immunity. Curr Opin Immunol 2000; 12: 419-24.
  • 20 Darnell JE, Jr. Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994; 264: 1415-21.
  • 21 Lu R, Moore PA, Pitha PM. Stimulation of IRF-7 gene expression by tumor necrosis factor alpha: requirement for NFkappa B transcription factor and gene accessibility. J Biol Chem 2002; 277: 16592-8.
  • 22 Navarro L, David M. p38-dependent activation of interferon regulatory factor 3 by lipopolysaccharide. J Biol Chem 1999; 274: 35535-8.
  • 23 Pfeffer LM, Kim J-G, Pfeffer SR. et al. Role of nuclear factor-{kappa}B in the antiviral action of interferon and interferon-regulated gene expression. J Biol Chem 2004; 279: 31304-11.
  • 24 Espert L, Rey C, Gonzalez L. et al. The exonuclease ISG20 is directly induced by synthetic dsRNA via NFkappaB and IRF1 activation. Oncogene 2004; 23: 4636-40.
  • 25 Zahringer U, Lindner B, Knirel YA. et al. Structure and biological activity of the short-chain lipopolysaccharide from Bartonella henselae ATCC 49882T. J Biol Chem 2004; 279: 21046-54.
  • 26 Gomez D, Reich NC. Stimulation of primary human endothelial cell proliferation by IFN. J Immunol 2003; 170: 5373-81.
  • 27 Bonizzi G, Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 2004; 25: 280-8.
  • 28 Romagnani P, Lasagni L, Annunziato F. et al. CXC chemokines: the regulatory link between inflammation and angiogenesis. Trends Immunol 2004; 25: 201-9.
  • 29 Karsan A, Yee E, Harlan JM. Endothelial cell death induced by tumor necrosis factor-alpha is inhibited by the Bcl-2 family member, A1. J Biol Chem 1996; 271: 27201-4.
  • 30 Deveraux QL, Takahashi R, Salvesen GS. et al. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 1997; 388: 300-4.
  • 31 Sevilla L, Aperlo C, Dulic V. et al. The Ets2 transcription factor inhibits apoptosis induced by colonystimulating factor 1 deprivation of macrophages through a Bcl-xL-dependent mechanism. Mol Cell Biol 1999; 19: 2624-34.
  • 32 Daniel S, Arvelo MB, Patel VI. et al. A20 protects endothelial cells from TNF-, Fas-, and NK-mediated cell death by inhibiting caspase 8 activation. Blood 2004; 104: 2376-84.
  • 33 Autiero M, Waltenberger J, Communi D. et al. Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 2003; 9: 936-43.
  • 34 Scharpfenecker M, Fiedler U, Reiss Y. et al. The Tie-2 ligand Angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J Cell Sci 2005; 118: 771-80.
  • 35 Kryczek I, Lange A, Mottram P. et al. CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res 2005; 65: 465-72.
  • 36 Wagener C, Ergun S. Angiogenic properties of the carcinoembryonic antigen-related cell adhesion molecule. Exp Cell Res 2000; 261: 19-24.
  • 37 Tait CR, Jones PF. Angiopoietins in tumours: the angiogenic switch. J Pathol 2004; 204: 1-10.
  • 38 Cerimele F, Brown LF, Bravo F. et al. Infectious angiogenesis: Bartonella bacilliformis infection results in endothelial production of angiopoetin-2 and epidermal production of vascular endothelial growth factor. Am J Pathol 2003; 163: 1321-7.
  • 39 Dehio C. Bartonella-host cell interactions and vascular tumour formation. Nature Rev Microbiol. 2005 in press.
  • 40 Kempf VAJ, Lebiedziejewski M, Alitalo K. et al. Activation of hypoxia-inducible factor-1 in bacillary angiomatosis: evidence for a role o47:416 f hypoxia-inducible factor-1 in bacterial infections. Circulation 2005; 111: 1054-62.
  • 41 Costa RH. FoxM1 dances with mitosis. Nat Cell Biol 2005; 7: 108-10.